超详细 | 遗传-粒子群自适应优化算法及其实现(Matlab)

这篇具有很好参考价值的文章主要介绍了超详细 | 遗传-粒子群自适应优化算法及其实现(Matlab)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

作者在前面的文章中介绍了两种经典的优化算法——遗传算法(GA)和粒子群算法(PSO),这些智能优化算法解决问题的方式和角度各不相同,都有各自的适用域和局限性,对智能优化算法自身做的改进在算法性能方面得到了一定程度的提升,但算法缺点的解决并不彻底。

为了克服使用单一智能优化算法在求解复杂问题中表现出的精度不高、易陷入局部最值、不能在全局搜索等一系列不足,算法融合的思想开始被研究和应用。因此本文将GA与PSO这两种经典算法进行融合,并辅以改进,从而利用它们的互补性,取长补短,提高求解复杂问题的能力。

00 文章目录

1 研究背景
2 遗传-粒子群自适应优化算法模型
3 代码目录
4 算法性能分析
5 源码获取
6 总结

01 研究背景

1.1 GA与PSO混合意义

无免费午餐定理,对任何优化问题,任两种优化算法的平均性能是相等的,没有任何一种优化算法在计算效率、通用性、全局搜索能力等性能方面都能表现得很好。

算法的混合也就成了算法优化领域的一个研究热点和趋势,混合有着固有的内在需求,不是简单地将算法组合叠加,要按照一定的策略和模式进行。

GA算法过程简单,全局收敛性好,多用于进行函数优化、数据挖掘、生产调度、组合优化、图像处理、机器学习等问题。但个体没有记忆,遗传操作盲目无方向,所需要的收敛时间长;
PSO算法原理简单,用速度、位移公式迭代易于实现,具有记忆功能,需要调节的参数少,在寻优稳定性和全局性收敛性方面具有很大优势,但容易陷入局部最优值出现早熟,种群多样性差,搜索范围小,在高维复杂问题寻优时更为明显,多用于求解组合优化、模式分解、传感器网络、生物分子研究等领域。

因此,GA算法因其遗传操作,种群多样,全局性好但个体没有记忆性,且收敛慢,而粒子群有记忆性,收敛快但易早熟,多样性差,这就使得两种算法在性能上有克服局限实现优势互补的可能,同时,作者在前面的文章中提出的自适应混沌粒子群能够使得初始解更加均匀,自适应变化的权重和学习因子能在一定程度上增加算法在进化后期搜索多样解的概率,因此将此改进引入混合模型中以期能提高算法性能。

1.2 遗传算法

遗传算法原理

1.3 自适应粒子群算法

自适应混沌粒子群

02 遗传-粒子群自适应优化算法模型

混合优化算法的方法有很多,有并行混合、串行混合、嵌入式混合三种,本文采用嵌入式混合。嵌入式混合是将整个算法或者是算法思想加入到另一个算法中,本文是将遗传算法的交叉与变异算子嵌入自适应混沌粒子群中,交叉与变异能够提高种群多样性并扩大算法的搜索范围,对算法取得全局最优解能够起到重要作用。
GA-APSO算法计算流程如下:
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

03 代码目录

遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

04 算法性能分析

4.1 测试函数

为了能够验证遗传-粒子群自适应算法对比本文提到的粒子群算法、遗传算法、遗传-粒子群算法有更好的效果,本文选用4个CEC的标准测试函数Sphere、Griewank、Rastrigin、Rosenbrock对算法的寻优精度、跳出局部能力、全局寻优能力进行检验。4个函数的表达式如下:
4.1.1 Sphere函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Sphere 函数的自变量𝑥𝑖的取值的范围:-100<𝑥𝑖<100;该函数存在唯一的一个全局的最小值,且当𝑥=(0,0,…,0)时,函数取得全局最小值 f1(x) = 0。选择该函数是对算法寻优的精度进行测试。
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

4.1.2 Griewank函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Griewank 函数的自变量𝑥𝑖的取值的范围:-600<𝑥𝑖<600;该函数在整个的数 据分布含有大量局部极值,但是存在全局最小值 f2(x) = 0,是一种比较复杂的多模的复杂性问题,因此选择该函数目的是对算法是否跳出局部,能够继续搜索的 能力进行测试。
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

4.1.3 Rastrigin函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Rastrigin 函数的自变量𝑥𝑖的取值的范围:-5.12<𝑥𝑖<5.12;在 x = ( 0,0 ,…, 0 ) 处的时候存在全局极小点 0,该函数是一个非线性的多峰值函数,存在大量的局部最小值,寻找全局极小值时有一定的困难,因此用此函数可以,对算法的全局寻优能力检验测试。
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

4.1.4 Rosenbrock函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Rosenbrock 函数的自变量𝑥𝑖的取值的范围:-30<𝑥𝑖<30;该函数是一单峰函数, 存在全局极小值,位于一个类似开口向上的抛物线的最低点处,虽然能够比较容易找到,但是很难收敛到最低处,因此可以测试全局寻优的能力。
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

4.2 测试结果

Sphere函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Griewank函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Rastrigin函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

Rosenbrock函数
遗传算法优化的粒子群算法,matlab程序,粒子群算法,MATLAB,遗传算法,算法,matlab,开发语言

可以看到经遗传算法和粒子群算法经混合后能够极大的提升其全局寻优的性能,而经过改进后的粒子群与遗传算法进行混合仍能够在其基础上提升性能,因此此改进有效。

05 源码获取

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

https://mbd.pub/o/bread/ZJuVlpps

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

06 总结

本文中将遗传算法与自适应混沌粒子群算法进行混合寻优,对比GA-PSO,GA,PSO,其性能得到提升,同时也可以利用作者前面提到过的关于粒子群与遗传算法的多种改进方法进行混合,相信一定也能取得相当好的效果,后续作者也会更新关于混合算法的程序
另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞 (ง •̀_•́)ง(不点也行),若有定制需求,可私信作者。文章来源地址https://www.toymoban.com/news/detail-812804.html

到了这里,关于超详细 | 遗传-粒子群自适应优化算法及其实现(Matlab)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真

    目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 遗传算法(GA)基本原理 4.2 粒子群优化(PSO)基本原理 4.3 算法优化策略 5.完整程序        VRPTW是车辆路径问题(VRP)的一个扩展,它在基本的车辆路径问题上增加了对客户服务时间窗的考虑

    2024年02月02日
    浏览(77)
  • 【无人机】基于遗传算法混合粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)

      💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 对于

    2024年04月25日
    浏览(52)
  • 【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)

      💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 对于

    2024年04月28日
    浏览(46)
  • 超详细 | 鲸鱼优化算法原理及其实现(Matlab/Python)

    鲸鱼优化算法(whale optimization algorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,该算法整个过程包含搜索觅食、收缩包围和螺旋更新位置三个阶段。 鲸鱼优化算法的三个种群更新机制相互独立,因此其

    2024年02月04日
    浏览(50)
  • 129基于matlab的粒子群算法、遗传算法、鲸鱼算法、改进鲸鱼算法优化最小二乘支持向量机(lssvm)的gam正则化参数和sig2RBF函数的参数

    基于matlab的粒子群算法、遗传算法、鲸鱼算法、改进鲸鱼算法优化最小二乘支持向量机(lssvm)的gam正则化参数和sig2RBF函数的参数。输出适应度曲线,测试机和训练集准确率。程序已调通,可直接运行。 129 matlabLSSVM优化算法 (xiaohongshu.com)

    2024年01月16日
    浏览(58)
  • 遗传算法及其MATLAB实现(附完整代码)

           遗传算法是经典的智能算法, 经常被用来求解各种N-P问题, 各种非线性函数的优化等, 可以实现各类模型的非最优解优化. 遗传算法稳定性比较强, 优化的效果比较好, 不是特别依赖初值, 尤其对离散自变量的函数优化是很合适的, 比较容易得到理论最优解, 整体的

    2024年02月13日
    浏览(49)
  • 【遗传模拟退火算法的Java实现及其应用】

    遗传模拟退火算法是一种基于遗传算法和模拟退火算法的启发式优化算法。它的基本思路是在解决优化问题时模拟生物进化的过程,利用遗传算法的遗传操作和模拟退火算法的搜索策略。 初始化种群 :初始化种群包含解和目标函数值。 适应度评估 :使用目标函数对种群中的

    2024年02月08日
    浏览(69)
  • 遗传算法与粒子群算法对比

    优点: 在求解多峰问题时遗传算法交叉和变异算子的无方向性,这有助于其具有更好的全局探索能力,在优化多峰函数时可以采用遗传算法 既可以应用于离散问题,也可以应用于连续问题 遗传算法中染色体之间可以实现信息的共享与互换,这有利于整个种群中的个体均匀的

    2024年02月12日
    浏览(34)
  • 多目标粒子群(MOPSO)算法原理及其MATLAB实现

    粒子群算法(PSO)是Eberhart和Kennedy于1995年提出的一种模拟鸟类觅食行为的算法[1],具有操作简单、速度快等特点。但在实际应用中,许多决策问题都是多目标优化问题,采用粒子群算法来处理多目标优化问题是一种有效方法,Coello 等人将粒子群优化算法扩展到多个目标,提出了

    2024年03月11日
    浏览(51)
  • 粒子群算法及其MATLAB实现(附完整代码和讲解)

    粒子群算法是模仿鸟类捕食的一种智能仿生算法,具有流程简单,算子复杂度低的特点,是一种常用的智能算法,特别适用于自变量为实数的问题优化模型,维数较多时具有很好的效率,比fmincon之类的确定性算法具有更快的速度,在有限的时间内可以获得较好的结果。 粒子群

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包