如何用Python进行数据分析(保姆级教程)

这篇具有很好参考价值的文章主要介绍了如何用Python进行数据分析(保姆级教程)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

有小伙伴在学Python新手教程的时候说学Python比较复杂的地方就是资料太多了,比较复杂。

很多网上的资料都是从语法教起的,花了很多时间还是云里雾里,摸不清方向。今天就给大家来捋一捋思路!帮助大家提高学习效率!

如何用Python进行数据分析(保姆级教程),python,数据分析,windows
Python数据分析资料可以点击下方链接或者扫描下方二维码获取:

最新全套【Python入门到进阶资料 & 实战源码 &安装工具】(安全链接,放心点击)
如何用Python进行数据分析(保姆级教程),python,数据分析,windows

三大板块:

  • 两组Python基础术语
  • 如何实现爬虫
  • 如何做数据分析

1.两大Python基础术语

A.变量和赋值

Python可以直接定义变量名字并进行赋值的,例如我们写出a = 4时,Python解释器干了两件事情:

  • 在内存中创建了一个值为4的整型数据
  • 在内存中创建了一个名为a的变量,并把它指向4

用一张示意图表示Python变量和赋值的重点:

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

例如下图代码,“=”的作用就是赋值,同时Python会自动识别数据类型:

复制代码a=4 #整型数据
b=2 #整型数据
c=“4” #字符串数据
d=“2” #字符串数据
print(“a+b结果为”,a+b)#两个整数相加,结果是6
print(“c+d结果为”,c+d)#两个文本合并,结果是文本“42”
#以下为运行结果
>>>a+b结果为 6
>>>c+d结果为 42

请阅读代码块里的代码和注释,你会发现Python是及其易读易懂的。

B.数据类型

在初级的数据分析过程中,有三种数据类型是很常见的:

  • 列表list(Python内置)
  • 字典dic(Python内置)
  • DataFrame(工具包pandas下的数据类型,需要import pandas才能调用)

它们分别是这么写的:

列表(list):

复制代码#列表
liebiao=[1,2.223,-3,'刘强东','章泽天','周杰伦','昆凌',['微博','B站','抖音']]

list是一种有序的集合,里面的元素可以是之前提到的任何一种数据格式和数据类型(整型、浮点、列表……),

并可以随时指定顺序添加其中的元素,其形式是:

复制代码#ist是一个可变的有序表,所以,可以往list中追加元素到末尾:
liebiao.append('瘦')
ptint(liebiao)
#结果1
>>>[1, 2.223, -3, '刘强东', '章泽天', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']
#也可以把元素插入到指定的位置,比如索引号为5的位置,插入“胖”这个元素:
liebiao.insert(5, '胖')
ptint(liebiao)
#结果2
>>>[1, 2.223, -3, '刘强东', '章泽天', '胖', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']

字典(dict):

复制代码#字典
zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}

字典使用**键-值(key-value)**存储,无序,具有极快的查找速度。以上面的字典为例,想要快速知道周杰伦的年龄,

就可以这么写:

复制代码zidian['周杰伦']
>>>'40'

dict内部存放的顺序和key放入的顺序是没有关系的,也就是说,"章泽天"并非是在"刘强东"的后面。

DataFrame:

DataFrame可以简单理解为excel里的表格格式。导入pandas包后,字典和列表都可以转化为DataFrame,

以上面的字典为例,转化为DataFrame是这样的:

复制代码import pandas as pd
df=pd.DataFrame.from_dict(zidian,orient='index',columns=['age'])#注意DataFrame的D和F是大写
df=df.reset_index().rename(columns={'index':'name'})#给姓名加上字段名

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

和excel一样,DataFrame的任何一列或任何一行都可以单独选出进行分析。

是不是有很多东西在学Python新手入门教程的时候不懂的,在这里悟了一些呢!

以上三种数据类型是python数据分析中用的最多的类型,基础语法到此结束,接下来就可以着手写一些函数计算数据了。

2.从Python爬虫来学循环函数

掌握了以上基本语法概念,我们就足以开始学习一些有趣的函数。我们以爬虫中绕不开的遍历url为例,讲讲大家最难理解的循环函数for的用法:

  • for函数

for函数是一个常见的循环函数,先从简单代码理解for函数的用途:

复制代码zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}
for key in zidian:
 print(key)
>>>
刘强东
章泽天
周杰伦
昆凌

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不是每次都一样。默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时#迭代key和value,可以用for k, v in d.items()

可以看到,字典里的人名被一一打印出来了。for 函数的作用就是用于遍历数据。掌握for函数,可以说是真正入门了Python函数。

  • 爬虫和循环

for函数在书写Python爬虫中经常被应用,因为爬虫经常需要遍历每一个网页,以获取信息,所以构建完整而正确的网页链接十分关键。以某票房数据网为例,他的网站信息长这样:

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

该网站的周票房json数据地址可以通过抓包工具找到,网址为www.cbooo.cn/BoxOffice/g…

仔细观察,该网站不同日期的票房数据网址(url)只有后面的日期在变化,访问不同的网址(url)就可以看到不同日期下的票房数据:

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

我们要做的是,**遍历每一个日期下的网址,用Python代码把数据爬下来。**此时for函数就派上用场了,使用它我们可以快速生成多个符合条件的网址:

复制代码import pandas as pd
url_df = pd.DataFrame({'urls':['http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=' for i in range(5)],'date' :pd.date_range(20190114,freq = 'W-MON',periods = 5)})
'''
将网址相同的部分生成5次,并利用pandas的时间序列功能生成5个星期一对应的日期。
其中用到了第一部分提供的多个数据类型:
range(5)属于列表,
'urls':[]属于字典,
pd.dataframe属于dataframe
'''
url_df['urls'] = url_df['urls'] + url_df['date'].astype('str')

滑动滑块可以看到完整代码和中间的注释。

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

为了方便理解,我给大家画了一个for函数的遍历过程示意图:

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

此处省略掉后续爬取过程,相关爬虫代码见文末。我们使用爬虫爬取了5800+条数据,包含20个字段,时间囊括了从2008年1月

开始至2019年2月十一年期间的单周票房、累计票房、观影人次、场均人次、场均票价、场次环比变化等信息

3. 用Python实现数据分析?

除了爬虫,分析数据也是Python的重要用途之一,**Excel能做的事,Python究竟怎么实现呢;Excel不能做的事,Python又是否能实现呢?**利用电影票房数据,我们分别举一个例子说明:

  • Python分析

在做好数据采集和导入后,选择字段进行初步分析可以说是数据分析的必经之路。在Dataframe数据格式的帮助下,这个步骤变得很简单。

比如当我们想看单周票房第一的排名分别都是哪些电影时,可以使用pandas工具库中常用的方法,筛选出周票房为第一名的所有数据,

并保留相同电影中周票房最高的数据进行分析整理:

复制代码import pandas as pd
data = pd.read_csv('中国票房数据爬取测试20071-20192.csv',engine='python')
data[data['平均上座人数']>20]['电影名']
#计算周票房第一随时间变化的结果,导入数据,并选择平均上座人数在20以上的电影为有效数据
dataTop1_week = data[data['排名']==1][['电影名','周票房']]
#取出周票房排名为第一名的所有数据,并保留“电影名”和“周票房”两列数据
dataTop1_week = dataTop1_week.groupby('电影名').max()['周票房'].reset_index()
#用“电影名”来分组数据,相同电影连续霸榜的选择最大的周票房保留,其他数据删除
dataTop1_week = dataTop1_week.sort_values(by='周票房',ascending=False)
#将数据按照“周票房”进行降序排序
dataTop1_week.index = dataTop1_week['电影名']
del dataTop1_week['电影名']
#整理index列,使之变为电影名,并删掉原来的电影名列
dataTop1_week
#查看数据

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

9行代码,我们完成了Excel里的透视表、拖动、排序等鼠标点击动作。最后再用Python中的可视化包matplotlib,快速出图:

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

  • 函数化分析

以上是一个简单的统计分析过程。接下来就讲讲Excel基础功能不能做的事——自定义函数提效。观察数据可以发现,

数据中记录了周票房和总票房的排名,那么刚刚计算了周票房排名的代码,还能不能复用做一张总票房分析呢?

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

当然可以,只要使用def函数和刚刚写好的代码建立自定义函数,并说明函数规则即可:

def pypic(pf):

#定义一个pypic函数,变量是pf

dataTop1_sum = data[[‘电影名’,pf]]

#取出源数据中,列名为“电影名”和pf两列数据

dataTop1_sum = dataTop1_sum.groupby(‘电影名’).max()[pf].reset_index()

#用“电影名”来分组数据,相同电影连续霸榜的选择最大的pf票房保留,其他数据删除

dataTop1_sum = dataTop1_sum.sort_values(by=pf,ascending=False)

#将数据按照pf进行降序排序

dataTop1_sum.index = dataTop1_sum[‘电影名’]

del dataTop1_sum[‘电影名’]

#整理index列,使之变为电影名,并删掉原来的电影名列

dataTop1_sum[:20].iloc[::-1].plot.barh(figsize = (6,10),color = ‘orange’)

name=pf+‘top20分析’

plt.title(name)

#根据函数变量名出图

定义函数后,批量出图so easy:

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

学会函数的构建,一个数据分析师才算真正能够告别Excel的鼠标点击模式,迈入高效分析的领域

以上就是今天的全部内容分享,觉得有用的话欢迎点赞收藏哦!

Python经验分享

学好 Python 不论是用于就业还是做副业赚钱都不错,而且学好Python还能契合未来发展趋势——人工智能、机器学习、深度学习等。
小编是一名Python开发工程师,自己整理了一套最新的Python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,这份【最新全套Python学习资料】 一定对你有用!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等学习教程。带你从零基础系统性的学好Python!

最新全套【Python入门到进阶资料 & 实战源码 &安装工具】(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
如何用Python进行数据分析(保姆级教程),python,数据分析,windows

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

如何用Python进行数据分析(保姆级教程),python,数据分析,windows

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

如何用Python进行数据分析(保姆级教程),python,数据分析,windows
如何用Python进行数据分析(保姆级教程),python,数据分析,windows

我已经上传至CSDN官方,如果需要可以扫描下方官方二维码免费获取【保证100%免费】
如何用Python进行数据分析(保姆级教程),python,数据分析,windows
*今天的分享就到这里,喜欢且对你有所帮助的话,记得点赞关注哦~下回见 !文章来源地址https://www.toymoban.com/news/detail-812913.html

到了这里,关于如何用Python进行数据分析(保姆级教程)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 苹果电脑MacBook M1芯片安装SPSS(数据分析工具)教程详细介绍:保姆级教程!!!

    特别强调:在安装过程中请逐一对照安装步骤,操作可以慢一点但是不要出错,避免出现一系列报错或者无法打开软件的情况。 首先准备好两个安装文件,一个是后缀为 dmg 的安装包,一个是 pojie 文件。首先在下面附上安装文件链接(点击即可): 链接: 百度网盘 提取码:

    2023年04月22日
    浏览(276)
  • 使用Python进行数据分析——方差分析

    大家好,方差分析可以用来判断几组观察到的数据或者处理的结果是否存在显著差异。本文介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。 根据影响试验条件的因素个数可以将方差分析分为

    2024年02月15日
    浏览(72)
  • 使用Python进行数据分析——线性回归分析

    大家好,线性回归是确定两种或两种以上变量之间互相依赖的定量关系的一种统计分析方法。根据自变量的个数,可以将线性回归分为一元线性回归和多元线性回归分析。 一元线性回归:就是只包含一个自变量,且该自变量与因变量之间的关系是线性关系。例如通过广告费这

    2023年04月10日
    浏览(97)
  • 如何使用Python进行数据分析?

    要使用Python进行数据分析,可以按照以下步骤进行: 安装Python:首先,你需要安装Python解释器。可以从Python官方网站下载并安装适合你操作系统的Python版本。 安装数据分析库:Python有许多强大的数据分析库,如NumPy、Pandas和Matplotlib。使用pip命令或包管理工具安装这些库。 导

    2024年02月10日
    浏览(59)
  • 使用Python批量进行数据分析

    知识延伸 1、sort_value()是pandas模块中DataFrame对象的函数,用于将数据区域按照某个字段的数据进行排序,这个字段可以是行字段,也可以是列字段。 语法格式: sort_value(by=\\\'##\\\',axis=0,ascending=True,inplace=False,na_position=\\\'last\\\') 参数 说明 by 要排序的列名或索引值 axis 如果省略或者为

    2024年02月10日
    浏览(43)
  • Python小知识 - 使用Python进行数据分析

    使用Python进行数据分析 数据分析简介 数据分析,又称为信息分析,是指对数据进行综合处理、归纳提炼、概括总结的过程,是数据处理的第一步。 数据分析的目的是了解数据的内在规律,为数据挖掘,并应用于商业决策、科学研究等提供决策依据。 数据分析的基本方法 数

    2024年02月10日
    浏览(34)
  • 使用Python进行数据分析——描述性统计分析

    大家好,描述性统计分析主要是指求一组数据的平均值、中位数、众数、极差、方差和标准差等指标,通过这些指标来发现这组数据的分布状态、数字特征等内在规律。在Python中进行描述性统计分析,可以借助Numpy、Pandas、SciPy等科学计算模块计算出指标,然后用绘图模块Ma

    2024年02月07日
    浏览(52)
  • 使用Python进行健身手表数据分析

    健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据,以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。 Fitness Watch数据分析是健康和保健领域

    2024年02月10日
    浏览(52)
  • 使用Python对物流行业数据进行数据分析

    Excel适合处理低量级数据,当数据量过高,Excel只能展现部分数据,不利于后续的数据分析,此时使用Python进行数据分析更加方便,有效。 先使用info()函数查看数据信息 从图中可以看出该物流数据共有1160条数据,每条数据有10列,其中 订单号 、 货品交货状况 和 数量 列存在

    2024年02月10日
    浏览(45)
  • 【数据分析实战】基于python对酒店预订需求进行分析

    🙋‍♂️作者简介:生鱼同学,大数据科学与技术专业硕士在读👨‍🎓,曾获得华为杯数学建模国家二等奖🏆,MathorCup 数学建模竞赛国家二等奖🏅,亚太数学建模国家二等奖🏅。 ✍️研究方向:复杂网络科学 🏆兴趣方向:利用python进行数据分析与机器学习,数学建模竞

    2023年04月08日
    浏览(86)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包