【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits

这篇具有很好参考价值的文章主要介绍了【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

阅读时间:2023-11-19

1 介绍

年份:2016
作者:Paul Miller 马萨诸塞州沃尔瑟姆市布兰代斯大学Volen国家复杂系统中心
期刊: F1000Research
引用量:63
这篇论文主要关注神经回路中的动力系统和吸引子。作者指出神经回路的复杂性和所涉及的非线性,加上数据受限和在动力系统领域的有限条件,可能会导致错误的模型。作者提出应该使用基于动力系统的适当数学模型来为神经回路的适当建模提供基础。对几种不同类型的动力系统进行了研究,包括点吸引子、多稳态和记忆,以及抑制稳定网络及其在神经回路中的作用。此外还提出一些观点
(1)大脑中神经活动的模型有不同类型的动力系统。
(2)不同脑区的神经回路可能以不同的动力机制运行。
(3)神经回路的动态机制取决于多种因素,包括连接模式、学习、输入和神经调制。
(4)没有一种单一的动力系统可以准确地解释所有的神经功能,更好地理解各种动力系统是很重要的。
(5)仅仅知道连接组(哪些神经元相互连接)是不足以理解神经回路的运作的。
(6)观察协调的神经活动对于理解大脑的能力是非常重要的。

2 创新点

(1)强调神经回路的动力学系统和吸引子:论文指出,为了正确地对神经回路进行建模,应使用基于动力学系统的适当数学模型。文中分析了几种不同类型的动力学系统,包括点吸引子、多稳态和记忆,以及抑制稳定网络,并讨论了它们在神经回路中的作用。
(2)引入局限性数据和隐藏变量概念:作者认为当前关于哺乳动物神经回路动力学性质的争论很大程度上源自数据稀疏和关于回路完全描述所需的相关变量往往未知或隐藏,因此无法进行全面描述。这一观点强调了数据的局限性及相关变量的重要性。
(3)阐述动力学系统对准确建模的重要性:尽管面临挑战,作者认为更好地理解动力学系统对于准确和全面地建模神经回路至关重要。这一观点强调了动力学系统在研究神经回路时的重要性,并为解决当前的建模争议提供了思路。
总之,该论文创新之处在于强调神经回路建模中动力学系统和吸引子的重要性,以及局限性数据和隐藏变量的影响,提出了动力学系统对准确建模的关键作用。

3 理论分析

(1)在解释认知过程时,对神经回路动力学缺乏共识源于不同的起点,如混沌系统、振荡器或点吸引子状态。
(2)神经回路是由耦合微分方程描述的非线性动态系统,但相关的连续变量通常是隐藏的,只能记录一小部分细胞。还有许多其他特性影响细胞和整个电路的持续行为。这些可能包括每个突触连接处神经递质囊泡的数量及其电压依赖释放概率,或各种离子通道的活化和失活的细胞平均状态。钙离子浓度和所有这些值的空间分布也可以影响神经活动。
(3)动力系统主要有三大类:点吸引子、振子和混沌系统,每一类都以变量随时间的行为为特征。
(4)研究只有几个神经元的电路提供了不同动力学的例子,但具有数百或数千个神经元的高维系统与认知功能更相关。本文考虑仅有两个或三个神经元的电路,以提供多种不同类型的动力学示例。一般来说,一个具有数百或数千个神经元的系统 ,需要一个数百或数千维的空间来绘制所有神经元的膜电位或发放率的协同动力学 ,可能包含点吸引子、极限环和混沌区域,这取决于哪些细胞子集在某个时间段内活动更强烈。
(5)点吸引子
点吸引子是动力学的稳定平衡点,虽然在现实中神经回路不能严格处于点吸引子状态,但可以考虑将变量的平均值,例如大量神经元的平均发放率,视为在初始瞬态响应之后的稳定状态。神经元的变异性可以通过噪声项来解释,导致每个神经元的脉冲以随机的方式产生,但其概率依赖于一个可能是静态和确定性的隐藏变量,以及关于其稳定平衡点的噪声驱动波动。因此,点吸引子框架与不断变化的神经活动并不矛盾。
【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits,博士每天一篇文献,吸引子,神经系统,神经回路,动力系统,多稳态
在阈值线性双单元电路中存在无输入的单点吸引子和有输入的不同点吸引子。

(A) 图例中展示了一个模型电路,箭头表示兴奋性连接,球体表示抑制性连接。
(B) 时间作为横轴,应用电流作为纵轴。两个不同大小的电流脉冲被应用到单元1。
耦合网络中的时间作为横轴,射频作为纵轴。在每个电流脉冲步骤中,会产生一个新的吸引子,但在电流脉冲结束后,原始的活动状态会恢复。
(D) 两个单元的射频的任何特定组合(x轴表示单元1的射频,y轴表示单元2的射频)决定了这些射频随时间的变化方式(箭头表示)。从任意射频对的起点出发,按照箭头的方向移动,最终会达到两条线交叉的点。

  • 红线:单元2的零线 - 在给定单元1的射频值时,dr(2)/dt = 0(其固定点)时的r(2)值。由于单元1刺激单元2,r(2)的固定点随r(1)的增加而增加。
  • 黑线:单元1的零线 - 在给定单元2的射频值时,dr(1)/dt = 0(其固定点)时的r(1)值。由于单元2抑制单元1,r(1)的固定点随r(2)的增加而减少。
  • 固定点:零线交叉点是整个系统的固定点。这个固定点是稳定的(所以是一个吸引子状态),因为箭头会汇聚到固定点。
  • (E) 与(D)类似,但在第二个应用电流脉冲期间的解决方案。应用电流会使得单元1的零线移动,使得系统的固定点在更高的r(1)和r(2)值上。实现参考Matlab代码中的“dynamics_two_units.m”

(6)多稳态和记忆
当一个系统在没有刺激的情况下具有多个吸引子状态时,先前刺激的历史可以决定神经回路的当前活动状态,即它所处的特定吸引子状态,因此该系统可以保留记忆。
【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits,博士每天一篇文献,吸引子,神经系统,神经回路,动力系统,多稳态
多稳定吸引子网络可以通过阈值线性双单元电路的持续活动在状态之间切换以编码不同的记忆

(C)耦合网络的发放率随时间的变化显示出三种不同的活动状态:单位1和单位2都不活跃,或者其中一个活跃。这种活动在应用电流之后依然持续存在,这是多稳态的标志,所以它保留了过去输入的记忆。
(D)黑红两条线的交点是多个,相交点是不稳定的。零线的交点是整个系统的一个固定点,固定点是稳定的(因此是一个吸引子状态)

(7)抑制稳定网络
抑制稳定网络(Inhibition-stabilized network,IS)是一种以强反馈抑制为特征的神经回路行为,它稳定了兴奋性放电率。该网络即使在存在自激的情况下也能保持稳定。海马体和皮层的区域可能在这种状态下运作。抑制细胞的外部兴奋性输入的减少实际上会导致它们的放电率增加,从而导致抑制细胞和兴奋细胞的放电率都更高。这种矛盾的效应是网络中存在的强反馈回路的结果。在海马体和初级视觉皮层中发现了抑制稳定网络运作的证据。
【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits,博士每天一篇文献,吸引子,神经系统,神经回路,动力系统,多稳态
阈值线性双单元电路中单点吸引子在抑制稳定状态下的“矛盾”位移

(C)对第二个单元施加外部抑制会导致其发放率增加

(8)吸引态流动
指的是一个系统在不同的活动模式之间快速切换的现象,这种模式持续的时间比切换的时间长。它可以通过具有多个稳定点吸引子的电路中的噪声驱动波动或通过突触抑制或放电速率适应等生物过程发生。这种准稳定状态的流动可以在序列记忆、贝叶斯计算和决策中发挥作用。吸引子状态流动的实验识别可能需要对神经尖峰序列进行非标准分析,例如隐马尔可夫模型。
(9)解决多稳定模型中不切实际的发放率问题
指在多稳定模型中观察到的高发放率问题,这与在体内观察到的较低发放率不一致。几个建模假设可以帮助解决这个问题,例如考虑通过NMDA受体或突触促进介导的周期性反馈的时间常数。另一种可能性是存在兴奋性和抑制性细胞亚群,它们在抑制稳定的状态下工作,这允许在低放电率下保持稳定的活性。
(10)边缘状态(线吸引子或连续吸引子)
是一种具有边缘稳定性的动力系统,在该状态下系统的变量趋近于一个连续的范围(一条线),当活动偏离该线时会向该线恢复,但沿该线的偏差可能会随时间累积。边缘状态在神经电路模型中可能依赖于底层对称性或参数的微调,能够编码和存储连续数量的值,完美地随时间积分信息,并以贝叶斯方式将先验信息与感觉输入相结合。边缘状态的实验预测特征包括神经活动在恒定刺激下随噪声累积而呈现随机游走的漂移,导致方差与时间线性增加;对输入进行完美的时间积分;以及单个神经脉冲序列内线性衰减的相关性。
【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits,博士每天一篇文献,吸引子,神经系统,神经回路,动力系统,多稳态
通过仔细调整阈值线性双单元电路中的连接强度,可以产生边缘状态或连续/线吸引子

(C)由于两个单元相互抑制,重叠的线具有负梯度

(10)震荡系统(循环吸引子或极限环)
是指能够产生周期性振荡的系统。这些系统在一个变量与另一个变量的图表中呈现闭环形状。由于活动会被吸引到循环上(也就是嵌入在更高维度空间中的一条线),所以震荡系统与线吸引子有一些相似之处。小的扰动可以在震荡的相位中累积(沿着极限环的线),因此,就像线吸引子一样,噪音会沿着一个特定的方向进行随机漫步累积。此外,震荡器的相位会记忆扰动,因此震荡器也可以是积分器,尽管只能积分至一个周期的偏移,并且需要与无扰动的震荡器进行比较。
(11)混沌系统(奇特吸引子)
当神经元之间的连接足够强大且兴奋性和抑制性的随机连接平衡时,神经系统就会变得混沌。这种混沌系统在处理信息和记忆方面可能会带来严重问题,因为对初始条件的最小变化会导致结果的不确定性。
然而,在接近混沌边缘的系统可以在计算上具有高效率,并且可以对输入进行可靠的追踪,同时响应比有序系统更快。混沌系统还可以通过改变神经元之间的连接强度来学习和编码几乎任何时空输入模式,并实现多个模式的切换和处理许多基于规则的任务。具有高度灵活性和可训性,可以编码和处理复杂的时空输入模式,并在刺激下快速响应。
【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits,博士每天一篇文献,吸引子,神经系统,神经回路,动力系统,多稳态
一个阈值线性三元电路中的混沌活动

(12) Heteroclinics
是指系统中移动在不同马鞍点之间的轨迹。马鞍点是系统中的一个常见的固定点,其具有向一些方向靠近马鞍点的趋势,而向其他方向远离马鞍点的趋势。Heteroclinics序列类似于具有吸引-漫游状态和在短时间尺度上看起来稳定的状态之间切换的一种类型的振荡器。在Heteroclinics序列中,活动可以被引导到每个马鞍点附近,就像是一个吸引态,但是一旦接近马鞍点,活动将发现其不稳定的方向并远离。Heteroclinics序列的模型被提出作为记忆和决策的基础。在神经回路中,随机连接的神经回路存在适当数量的Heteroclinics轨迹用于信息处理。然而,目前还没有将Heteroclinics序列的认知处理与实证数据联系起来的独特预测。
【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits,博士每天一篇文献,吸引子,神经系统,神经回路,动力系统,多稳态
阈值线性三单元电路中的异斜轨道
(13)临界性(Criticality)
大脑处于临界状态,实际上呈现自组织临界性(self-organized criticality)状态,并且应该以此进行研究。临界性是一个系统的测量状态,而不是一个动力学模型。在神经回路模型中,临界状态是指当神经活动被从线的轨迹偏离时,它会恢复到该轨迹,并且沿着该轨迹的偏差会随着时间的推移积累。临界性的神经回路能够编码和存储连续数量的值。临界状态的系统能够完美地进行时间上的信息整合。目前的观察结果表明,很多神经活动都接近于临界状态。虽然完全判定一个神经回路是否达到了精确的临界性是困难的,但仍有可能提供对神经活动的准确描述。总之,临界性是指处于自组织临界状态的神经回路,其特点是能够最优地进行信息处理和整合,同时也具有一定的稳定性和鲁棒性。

4 总结

(1)大脑中神经活动的模型有不同类型的动力系统。
(2)不同脑区的神经回路可能以不同的动力机制运行。
(3)神经回路的动态机制取决于多种因素,包括连接模式、学习、输入和神经调制。
(4)没有一种单一的动力系统可以准确地解释所有的神经功能,更好地理解各种动力系统是很重要的。
(5)仅仅知道连接组(哪些神经元相互连接)是不足以理解神经回路的运作的。
(6)观察协调的神经活动对于理解大脑的能力是非常重要的。

5 思考

(1)目前的研究都只集中在几个神经元的电路之间的相互作用,是不是在使用具有数百或数千个神经元的高维系统时,能够发生一个质变。高维系统才是与认知功能更相关的。当神经元多了之后,神经元之间的如何协同,需要考虑。
(2)一个大脑中有非常多的机制和系统组成,在做类脑的设计时,结合多种系统和机制来实施。文章来源地址https://www.toymoban.com/news/detail-812948.html

到了这里,关于【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【博士每天一篇文献-算法】Gradient Episodic Memory for Continual Learning

    阅读时间:2023-10-26 年份:2017 作者:David Lopez-Paz, Marc’Aurelio Ranzato 期刊:Part of Advances in Neural Information Processing Systems 30 (NIPS 2017) 引用量:2044 针对持续学习中灾难性遗忘问题提出一种名为Gradient Episodic Memory(GEM)算法,这种算法核心思想是将有益的知识传递给过去的任务。

    2024年02月06日
    浏览(40)
  • 软考高级系统架构设计师系列论文真题一:论软件系统架构风格:真题分析、理论素材、精品范文赏析

    系统架构风格是描述某一特定应用领域中系统组织方式的惯用模式。架构风格定义了一个词汇表和一组约束,词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件和连接件组合起来的。软件系统架构风格反映了领域中众多软件系统所共有的结构和语义

    2024年02月10日
    浏览(72)
  • 【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter2

    Gu A. Modeling Sequences with Structured State Spaces[D]. Stanford University, 2023. 本文是MAMBA作者的博士毕业论文,为了理清楚MAMBA专门花时间拜读这篇长达330页的博士论文,由于知识水平有限,只能尽自己所能概述记录,并适当补充一些相关数学背景,欢迎探讨与批评指正。内容多,分章节

    2024年01月20日
    浏览(42)
  • 【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter1

    Chapter1 Gu A. Modeling Sequences with Structured State Spaces[D]. Stanford University, 2023. 本文是MAMBA作者的博士毕业论文,为了理清楚MAMBA专门花时间拜读这篇长达330页的博士论文,由于知识水平有限,只能尽自己所能概述记录,并适当补充一些相关数学背景,欢迎探讨与批评指正。内容多,

    2024年01月19日
    浏览(56)
  • 带你读论文第十一期:上海人工智能实验室孙伟高博士,分享大模型分布式训练方法!...

     Datawhale论文  来源:WhalePaper,负责人:芙蕖 由Datawhale团队成员发起,对目前学术论文中比较成熟的 Topic 和开源方案进行分享,通过一起阅读、分享论文学习的方式帮助大家更好地“高效+全面+自律”学习,让大家都有所收获和提升!方向包括自然语言处理(NLP)、计算机视

    2024年04月23日
    浏览(51)
  • 区块链安全理论与实践(Blockchain for Distributed Systems Security)阅读笔记D1

    通过采用加密数据结构(不是加密数据),不需要一个可信中央机构就可以实现可信的去中心化的方式允许应用程序。 区块链具有容错机制,可以排除受损节点。 1、在难以确定受信的可进行强制授权和有效性证明的中心化仲裁机构这一约束情况下,能跨越不同的信任边界直

    2024年01月16日
    浏览(36)
  • 区块链安全理论与实践(Blockchain for Distributed Systems Security)阅读笔记D4——OM算法

    拜占庭将军问题是经典的共识问题之一。假设有 N N N 个拜占庭将军,每个人都指挥一个同样规模的军队,包围了一座地方城市。而拜占庭将军之间,是地理隔离的,他们之间只能通过信使送信进行交流。为了合作进攻,每个将军向其他将军送信传送消息进行投票来决定是否进

    2024年01月23日
    浏览(45)
  • 计算卸载论文阅读01-理论梳理

    标题:When Learning Joins Edge: Real-time Proportional Computation Offloading via Deep Reinforcement Learning 会议:ICPADS 2019 问题: 在任务进行卸载时,往往忽略了任务的特定的卸载比例。 模型: 针对上述问题,我们提出了一种创新的强化学习(RL)方法来解决比例计算问题。我们考虑了一种常

    2024年02月09日
    浏览(40)
  • 论文翻译——Test Selection for Deep Learning Systems

    Abstract 因为深度学习涉及到复杂并且大量的计算,所以对于深度学习的检测十分困难。而且测试数据一般都只能人工选择,并且只能一个一个标注。这就是提出了一个问题,如果我们能够自动选择候选数据去测试深度学习模型。最近的研究都是集中在定义衡量测试集彻底度的

    2024年02月08日
    浏览(54)
  • 【论文阅读 CIDR17】Self-Driving Database Management Systems

    MySummary 之前的advisory tools来帮助DBA处理系统调优和物理设计的各个方面,都仍然需要人类对数据库的任何更改做出最终决定,并且是在问题发生后修复问题的反动措施reactionary measures 。 An truly “self-driving” database management system (DBMS)是针对autonomous operation(自主操作)设计的全新

    2024年01月18日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包