C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果

这篇具有很好参考价值的文章主要介绍了C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1005.K次取反后最大化的数组和

力扣题目链接(opens new window)

给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)

以这种方式修改数组后,返回数组可能的最大和。

示例 1:

  • 输入:A = [4,2,3], K = 1
  • 输出:5
  • 解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。

示例 2:

  • 输入:A = [3,-1,0,2], K = 3
  • 输出:6
  • 解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。

示例 3:

  • 输入:A = [2,-3,-1,5,-4], K = 2
  • 输出:13
  • 解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。

提示:

  • 1 <= A.length <= 10000
  • 1 <= K <= 10000
  • -100 <= A[i] <= 100

#思路

本题思路其实比较好想了,如何可以让数组和最大呢?

贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。

局部最优可以推出全局最优。

那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。

那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。

虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。

我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!

那么本题的解题步骤为:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K--
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和

对应C++代码如下:

class Solution {
static bool cmp(int a, int b) {
    return abs(a) > abs(b);
}
public:
    int largestSumAfterKNegations(vector<int>& A, int K) {
        sort(A.begin(), A.end(), cmp);       // 第一步
        for (int i = 0; i < A.size(); i++) { // 第二步
            if (A[i] < 0 && K > 0) {
                A[i] *= -1;
                K--;
            }
        }
        if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
        int result = 0;
        for (int a : A) result += a;        // 第四步
        return result;
    }
};
  • 时间复杂度: O(nlogn)
  • 空间复杂度: O(1)

#总结

贪心的题目如果简单起来,会让人简单到开始怀疑:本来不就应该这么做么?这也算是算法?我认为这不是贪心?

本题其实很简单,不会贪心算法的同学都可以做出来,但是我还是全程用贪心的思路来讲解。

因为贪心的思考方式一定要有!

如果没有贪心的思考方式(局部最优,全局最优),很容易陷入贪心简单题凭感觉做,贪心难题直接不会做,其实这样就锻炼不了贪心的思考方式了

所以明知道是贪心简单题,也要靠贪心的思考方式来解题,这样对培养解题感觉很有帮助。

 

134. 加油站

力扣题目链接(opens new window)

在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

说明:

  • 如果题目有解,该答案即为唯一答案。
  • 输入数组均为非空数组,且长度相同。
  • 输入数组中的元素均为非负数。

示例 1: 输入:

  • gas = [1,2,3,4,5]
  • cost = [3,4,5,1,2]

输出: 3 解释:

  • 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
  • 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
  • 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
  • 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
  • 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
  • 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
  • 因此,3 可为起始索引。

示例 2: 输入:

  • gas = [2,3,4]

  • cost = [3,4,3]

  • 输出: -1

  • 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油。开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油。开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。因此,无论怎样,你都不可能绕环路行驶一周。

#思路

#暴力方法

暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。

如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。

暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程。

for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!

C++代码如下:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        for (int i = 0; i < cost.size(); i++) {
            int rest = gas[i] - cost[i]; // 记录剩余油量
            int index = (i + 1) % cost.size();
            while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
                rest += gas[index] - cost[index];
                index = (index + 1) % cost.size();
            }
            // 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
            if (rest >= 0 && index == i) return i;
        }
        return -1;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

#贪心算法(方法一)

直接从全局进行贪心选择,情况如下:

  • 情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的

  • 情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。

  • 情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。

C++代码如下:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum = 0;
        int min = INT_MAX; // 从起点出发,油箱里的油量最小值
        for (int i = 0; i < gas.size(); i++) {
            int rest = gas[i] - cost[i];
            curSum += rest;
            if (curSum < min) {
                min = curSum;
            }
        }
        if (curSum < 0) return -1;  // 情况1
        if (min >= 0) return 0;     // 情况2
                                    // 情况3
        for (int i = gas.size() - 1; i >= 0; i--) {
            int rest = gas[i] - cost[i];
            min += rest;
            if (min >= 0) {
                return i;
            }
        }
        return -1;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

其实我不认为这种方式是贪心算法,因为没有找出局部最优,而是直接从全局最优的角度上思考问题

但这种解法又说不出是什么方法,这就是一个从全局角度选取最优解的模拟操作。

所以对于本解法是贪心,我持保留意见!

但不管怎么说,解法毕竟还是巧妙的,不用过于执着于其名字称呼。

#贪心算法(方法二)

可以换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。

每个加油站的剩余量rest[i]为gas[i] - cost[i]。

i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。

如图:

C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果,leetcode,c++,算法,数据结构

那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?

如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。

那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:

C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果,leetcode,c++,算法,数据结构

如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。

区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了。

那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置

局部最优可以推出全局最优,找不出反例,试试贪心!

C++代码如下:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum = 0;
        int totalSum = 0;
        int start = 0;
        for (int i = 0; i < gas.size(); i++) {
            curSum += gas[i] - cost[i];
            totalSum += gas[i] - cost[i];
            if (curSum < 0) {   // 当前累加rest[i]和 curSum一旦小于0
                start = i + 1;  // 起始位置更新为i+1
                curSum = 0;     // curSum从0开始
            }
        }
        if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
        return start;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

说这种解法为贪心算法,才是有理有据的,因为全局最优解是根据局部最优推导出来的

#总结

对于本题首先给出了暴力解法,暴力解法模拟跑一圈的过程其实比较考验代码技巧的,要对while使用的很熟练。

然后给出了两种贪心算法,对于第一种贪心方法,其实我认为就是一种直接从全局选取最优的模拟操作,思路还是很巧妙的,值得学习一下。

对于第二种贪心方法,才真正体现出贪心的精髓,用局部最优可以推出全局最优,进而求得起始位置。

 

135. 分发糖果

力扣题目链接(opens new window)

老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。

你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

那么这样下来,老师至少需要准备多少颗糖果呢?

示例 1:

  • 输入: [1,0,2]
  • 输出: 5
  • 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

示例 2:

  • 输入: [1,2,2]
  • 输出: 4
  • 解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这已满足上述两个条件。

#思路

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

代码如下:

// 从前向后
for (int i = 1; i < ratings.size(); i++) {
    if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}

如图:

C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果,leetcode,c++,算法,数据结构

再确定左孩子大于右孩子的情况(从后向前遍历)

遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?

因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。

如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:

C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果,leetcode,c++,算法,数据结构

所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

局部最优可以推出全局最优。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多

如图:

C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果,leetcode,c++,算法,数据结构

所以该过程代码如下:

// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
    if (ratings[i] > ratings[i + 1] ) {
        candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
    }
}

整体代码如下:

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector<int> candyVec(ratings.size(), 1);
        // 从前向后
        for (int i = 1; i < ratings.size(); i++) {
            if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
        }
        // 从后向前
        for (int i = ratings.size() - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1] ) {
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
            }
        }
        // 统计结果
        int result = 0;
        for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
        return result;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

#总结

这在leetcode上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼。

那么本题我采用了两次贪心的策略:

  • 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
  • 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。

这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。文章来源地址https://www.toymoban.com/news/detail-813015.html

到了这里,关于C++力扣题目1005--K次取反后最大化的数组和 134--加油站 135--分发糖果的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【贪心算法Part03】| 1005.K次取反后最大化的数组和、134.加油站、135.分发糖果

    目录 🎈LeetCode1005.K次取反后最大化的数组和  🎈LeetCode134.加油站 🎈LeetCode135.分发糖果 链接:1005.K次取反后最大化的数组和 给你一个整数数组  nums  和一个整数  k  ,按以下方法修改该数组: 选择某个下标  i  并将  nums[i]  替换为  -nums[i]  。 重复这个过程恰好  k  次

    2024年02月16日
    浏览(44)
  • Day34 贪心算法 part03 1005. K 次取反后最大化的数组和 134. 加油站 135. 分发糖果

    思路 第一步,从前向后遍历,遇到负数将其变为正数,同时K– 第二步:如果K还大于0,那么反复转变数值最小的元素,将K用完 第三步:求和 方法一(暴力) leetcode超时(35/40) 方法二(贪心)

    2024年01月19日
    浏览(42)
  • 【Leetcode60天带刷】day33回溯算法——1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果

    ​ 1005. K 次取反后最大化的数组和 给你一个整数数组  nums  和一个整数  k  ,按以下方法修改该数组: 选择某个下标  i  并将  nums[i]  替换为  -nums[i]  。 重复这个过程恰好  k  次。可以多次选择同一个下标  i  。 以这种方式修改数组后,返回数组  可能的最大和  。

    2024年02月11日
    浏览(40)
  • 第八章 贪心算法 part03 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果 (day34补)

    给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i  并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数组 可能的最大和 。 示例 1: 示例 2: 示例 3: 提示: 1 = nums.length = 104 -100

    2024年02月11日
    浏览(37)
  • 力扣算法刷题Day34|贪心:K次取反后最大化的数组和 加油站 分发糖果

    力扣题目:# 1005.K次取反后最大化的数组和  刷题时长:10min 解题方法:贪心 复杂度分析 时间O(n) 空间O(1) 问题总结 无 本题收获 贪心思路:两次贪心 在包含正负无序的整数数组中,如何转变K次正负,让数组和达到最大 局部最优:让绝对值大的负数变为正数,当前数值达到

    2024年02月09日
    浏览(57)
  • K 次取反后最大化的数组和【贪心算法】

    1005 . K 次取反后最大化的数组和 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数组 可能的最大和 。 关于 nums = IntStream.of(nums

    2024年02月11日
    浏览(47)
  • LeetCode刷题笔记【25】:贪心算法专题-3(K次取反后最大化的数组和、加油站、分发糖果)

    参考前文 参考文章: LeetCode刷题笔记【23】:贪心算法专题-1(分发饼干、摆动序列、最大子序和) LeetCode刷题笔记【24】:贪心算法专题-2(买卖股票的最佳时机II、跳跃游戏、跳跃游戏II) LeetCode链接:https://leetcode.cn/problems/maximize-sum-of-array-after-k-negations/description/ 首先 sor

    2024年02月09日
    浏览(46)
  • DAY38:贪心算法(五)K次取反后最大数组和+加油站

    本题重点是逻辑问题,同时复习static和sort的自定义操作与时间复杂度 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数组 可能的

    2024年02月13日
    浏览(45)
  • C++力扣题目654--最大二叉树

    给定一个不重复的整数数组  nums  。  最大二叉树  可以用下面的算法从  nums  递归地构建: 创建一个根节点,其值为  nums  中的最大值。 递归地在最大值  左边  的  子数组前缀上  构建左子树。 递归地在最大值  右边  的  子数组后缀上  构建右子树。 返回  nums  构

    2024年01月20日
    浏览(40)
  • C++力扣题目104--二叉树的最大深度

    给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 返回它的最大深度 3 。 看完本篇可以一起做了如下两道题目: 104.二叉树的最大深度(opens n

    2024年01月16日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包