【AI作画】使用stable-diffusion-webui搭建AI作画平台

这篇具有很好参考价值的文章主要介绍了【AI作画】使用stable-diffusion-webui搭建AI作画平台。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、安装配置Anaconda

进入官网下载安装包https://www.anaconda.com/并安装,然后将Anaconda配置到环境变量中。

installing clip,机器学习,人工智能,python,pytorch,NovalAI

打开命令行,依次通过如下命令创建Python运行虚拟环境。

conda env create novelai python==3.10.6
E:\workspace\02_Python\novalai>conda info --envs
# conda environments:
#
base                  *  D:\anaconda3
novelai                  D:\anaconda3\envs\novelai
conda activate novelai

二、安装CUDA

笔者的显卡为NVIDIA,需安装NVIDIA的开发者工具进入官网https://developer.nvidia.com/,根据自己计算机的系统情况,选择合适的安装包下载安装。

installing clip,机器学习,人工智能,python,pytorch,NovalAI

打开安装程序后,依照提示完成安装。
installing clip,机器学习,人工智能,python,pytorch,NovalAIinstalling clip,机器学习,人工智能,python,pytorch,NovalAIinstalling clip,机器学习,人工智能,python,pytorch,NovalAI

安装完成后,在命令窗口输入如下命令,输出CUDA版本即安装成功。

C:\Users\yefuf>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0

三、安装pytorch

进入官网https://pytorch.org/,根据计算机配置选择合适的版本进行安装。这里需要注意的是CUDA的平台选择,先打开NVIDIA控制面板-帮助-系统信息-组件查看CUDA版本,官网上选择的计算平台需要低于计算机的NVIDIA版本。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
配置选择完成后,官网会生成相应的安装命令。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
将安装命令复制出,命令窗口执行安装即可。

conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia

当查到Pytorch官网推荐的CUDA版本跟你的显卡版本不匹配时,就需要根据官网的CUDA版本找到对应的显卡驱动版本并升级显卡驱动,对应关系可通过https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html查看
installing clip,机器学习,人工智能,python,pytorch,NovalAI

四、安装git

进入git官网https://git-scm.com/,下载安装即可。

五、搭建stable-diffusion-webui

进入项目地址https://github.com/AUTOMATIC1111/stable-diffusion-webui,通过git将项目克隆下来。

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
Cloning into 'stable-diffusion-webui'...
remote: Enumerating objects: 10475, done.
remote: Counting objects: 100% (299/299), done.
remote: Compressing objects: 100% (199/199), done.
remote: Total 10475 (delta 178), reused 199 (delta 100), pack-reused 10176
Receiving objects: 100% (10475/10475), 23.48 MiB | 195.00 KiB/s, done.
Resolving deltas: 100% (7312/7312), done.

克隆下载扩展库。

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients “extensions/aesthetic-gradients”
Cloning into 'extensions/aesthetic-gradients'...
remote: Enumerating objects: 21, done.
remote: Counting objects: 100% (21/21), done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 21 (delta 3), reused 18 (delta 3), pack-reused 0
Receiving objects: 100% (21/21), 1.09 MiB | 1.34 MiB/s, done.
Resolving deltas: 100% (3/3), done.
git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser “extensions/images-browser”
Cloning into 'extensions/images-browser'...
remote: Enumerating objects: 118, done.
remote: Counting objects: 100% (118/118), done.
remote: Compressing objects: 100% (70/70), done.
remote: Total 118 (delta 42), reused 65 (delta 24), pack-reused 0
Receiving objects: 100% (118/118), 33.01 KiB | 476.00 KiB/s, done.
Resolving deltas: 100% (42/42), done.

克隆完成后,extensions目录会多如下文件夹:
installing clip,机器学习,人工智能,python,pytorch,NovalAI
下载模型库https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies,并将下载的.ckpt

放到models/Stable-diffusion文件夹中。模型很大,推荐使用下载器。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
安装项目所需的Python依赖库。

pip install -r requirements.txt

installing clip,机器学习,人工智能,python,pytorch,NovalAI
安装完成之后,运行如下命令,顺利的话,当程序加载完成模型之后,会自动打开http://127.0.0.1:7860/显示平台主页。

python launch.py --autolaunch

进入平台的设置页面,选择语言为中文,重启程序之后,即可看到页面显示为中文。

installing clip,机器学习,人工智能,python,pytorch,NovalAI
在界面中输入作画内容的正向提示词(画想要什么特征)和反向提示词(画不想要什么特征),点击生成即可开始自动作画。

installing clip,机器学习,人工智能,python,pytorch,NovalAI
如上述的提示词作出的画如图(由于随机种子不同,生成的画会有差异)。
installing clip,机器学习,人工智能,python,pytorch,NovalAI

六、如何设置提示词

这里建议使用元素法典https://docs.qq.com/doc/DWHl3am5Zb05QbGVs,上面有前人整理好的提示词及效果,以供参考。
installing clip,机器学习,人工智能,python,pytorch,NovalAI

七、可能遇到的问题

1、GitHub访问不了或访问慢

一般为DNS解析问题,需要修改本地host文件,增加配置内容,绕过域名解析,达到加速访问的目的。

访问https://www.ipaddress.com/,分别输入github.comgithub.global.ssl.fastly.net,获取域名对应的IP地址。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
installing clip,机器学习,人工智能,python,pytorch,NovalAI
打开系统的Host文件,将IP和域名的对应关系配置到Host文件中。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
配置文件内容如下:

140.82.114.4	github.com
199.232.5.194	github.global.ssl.fastly.net

执行命令ipconfig /flushdns刷新DNS即可。

2、pip安装依赖库慢或常下载失败

pip安装依赖库时默认选择国外的源,安装速度会非常慢,可以考虑切换为国内源,常用的国内源如下:

阿里云 https://mirrors.aliyun.com/pypi/simple/ 
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/ 
豆瓣(douban) https://pypi.douban.com/simple/ 
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/ 
中国科学技术大学 https://pypi.mirrors.ustc.edu.cn/simple/

在安装依赖库时,可使用pip install -i 源 空格 安装包名称进行源的选择,如pip install -i https://mirrors.aliyun.com/pypi/simple numpy

也可以通过增加配置文件,使安装依赖库时默认选择国内的源,在用户目录下增加pip.ini文件。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
在文件中写入如下内容。

[global]
timeout = 60000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

[install]
use-mirrors = true
mirrors = https://pypi.tuna.tsinghua.edu.cn

3、安装CLIP时提示Connection was aborted, errno 10053

出错时的错误打印如下:

(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing clip
Traceback (most recent call last):
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 251, in <module>
    prepare_enviroment()
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 178, in prepare_enviroment
    run_pip(f"install {clip_package}", "clip")
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 63, in run_pip
    return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 34, in run
    raise RuntimeError(message)
RuntimeError: Couldn't install clip.
Command: "D:\anaconda3\envs\novelai\python.exe" -m pip install git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1 --prefer-binary
Error code: 1
stdout: Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
  Cloning https://github.com/openai/CLIP.git (to revision d50d76daa670286dd6cacf3bcd80b5e4823fc8e1) to c:\users\yefuf\appdata\local\temp\pip-req-build-f8w7kbzg

stderr:   Running command git clone --filter=blob:none --quiet https://github.com/openai/CLIP.git 'C:\Users\yefuf\AppData\Local\Temp\pip-req-build-f8w7kbzg'
  fatal: unable to access 'https://github.com/openai/CLIP.git/': OpenSSL SSL_read: Connection was aborted, errno 10053
  error: subprocess-exited-with-error

  git clone --filter=blob:none --quiet https://github.com/openai/CLIP.git 'C:\Users\yefuf\AppData\Local\Temp\pip-req-build-f8w7kbzg' did not run successfully.
  exit code: 128

  See above for output.

  note: This error originates from a subprocess, and is likely not a problem with pip.
error: subprocess-exited-with-error

git clone --filter=blob:none --quiet https://github.com/openai/CLIP.git 'C:\Users\yefuf\AppData\Local\Temp\pip-req-build-f8w7kbzg' did not run successfully.
exit code: 128

See above for output.

note: This error originates from a subprocess, and is likely not a problem with pip.

通过访CLIP项目GitHub主页,发现该项目可以通过如下命令进行安装解决。

pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git

4、项目启动中提示Connection was reset in connection to github.com

出错时的错误打印如下:

(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Cloning Stable Diffusion into repositories\stable-diffusion...
Cloning Taming Transformers into repositories\taming-transformers...
Traceback (most recent call last):
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 251, in <module>
    prepare_enviroment()
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 201, in prepare_enviroment
    git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 85, in git_clone
    run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 34, in run
    raise RuntimeError(message)
RuntimeError: Couldn't clone Taming Transformers.
Command: "git" clone "https://github.com/CompVis/taming-transformers.git" "repositories\taming-transformers"
Error code: 128
stdout: <empty>
stderr: Cloning into 'repositories\taming-transformers'...
fatal: unable to access 'https://github.com/CompVis/taming-transformers.git/': OpenSSL SSL_connect: Connection was reset in connection to github.com:443

在命令窗口中输入如下命令,然后重新运行程序,但实际操作下来,仍有较大概率在克隆项目的过程中失败。

git config --global http.postBuffer 524288000
git config --global http.sslVerify "false"

查看lauch.py中的代码可以发现,程序在启动时有对依赖项目进行检查,如项目不存在,则克隆下来。

def prepare_enviroment():
    torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
    requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
    commandline_args = os.environ.get('COMMANDLINE_ARGS', "")

    gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
    clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
    deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@d91a2963bf87c6a770d74894667e9ffa9f6de7ff")

    xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')

    stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git")
    taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
    k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
    codeformer_repo = os.environ.get('CODEFORMET_REPO', 'https://github.com/sczhou/CodeFormer.git')
    blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')

    stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
    taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
    k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
    codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
    blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")

因此,我们打开git bash重新执行上述两条git命令,预先将项目克隆下来。

git clone https://github.com/CompVis/taming-transformers.git "repositories\taming-transformers"

git clone https://github.com/crowsonkb/k-diffusion.git "repositories\k-diffusion"

git clone https://github.com/sczhou/CodeFormer.git "repositories\CodeFormer"

git clone https://github.com/salesforce/BLIP.git "repositories\BLIP"

克隆完成之后如图:
installing clip,机器学习,人工智能,python,pytorch,NovalAI

5、项目启动中提示CUDA out of memory

出错时的错误打印如下:

(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Fetching updates for BLIP...
Checking out commit for BLIP with hash: 48211a1594f1321b00f14c9f7a5b4813144b2fb9...
Installing requirements for CodeFormer
Installing requirements for Web UI
Launching Web UI with arguments:
Moving sd-v1-4.ckpt from E:\workspace\02_Python\novalai\stable-diffusion-webui\models to E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion.
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Downloading: 100%|██████████████████████████████████████████████████████████████████| 939k/939k [00:00<00:00, 1.26MB/s]
Downloading: 100%|███████████████████████████████████████████████████████████████████| 512k/512k [00:01<00:00, 344kB/s]
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 389/389 [00:00<?, ?B/s]
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 905/905 [00:00<?, ?B/s]
Downloading: 100%|████████████████████████████████████████████████████████████████████████| 4.41k/4.41k [00:00<?, ?B/s]
Downloading: 100%|████████████████████████████████████████████████████████████████| 1.59G/1.59G [03:56<00:00, 7.23MB/s]
Loading weights [7460a6fa] from E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion\sd-v1-4.ckpt
Global Step: 470000
Traceback (most recent call last):
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 252, in <module>
    start()
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\launch.py", line 247, in start
    webui.webui()
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\webui.py", line 148, in webui
    initialize()
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\webui.py", line 83, in initialize
    modules.sd_models.load_model()
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\sd_models.py", line 252, in load_model
    sd_model.to(shared.device)
  File "D:\anaconda3\envs\novelai\lib\site-packages\pytorch_lightning\core\mixins\device_dtype_mixin.py", line 113, in to
    return super().to(*args, **kwargs)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 987, in to
    return self._apply(convert)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 639, in _apply
    module._apply(fn)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 639, in _apply
    module._apply(fn)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 639, in _apply
    module._apply(fn)
  [Previous line repeated 2 more times]
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 662, in _apply
    param_applied = fn(param)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 985, in convert
    return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 2.00 GiB total capacity; 1.68 GiB already allocated; 0 bytes free; 1.72 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

根据提示,先尝试用如下命令改变pytorch配置,仍旧报错!

set PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6,max_split_size_mb:128

尝试增加代码with torch.no_grad(),使内存就不会分配参数梯度的空间,仍旧报错!
installing clip,机器学习,人工智能,python,pytorch,NovalAI
由于提示内存溢出,先通过控制面板->所有控制面板项->管理工具->系统信息,查看显卡内存大小。
installing clip,机器学习,人工智能,python,pytorch,NovalAI
官方推荐的显卡内存大小为4GB以上,而笔者的显卡内存只有2GB,显然GPU不符合要求。查看项目的命令选项,发现项目支持CPU计算--use-cpu

(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py -h
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing requirements for Web UI
Launching Web UI with arguments: -h
usage: launch.py [-h] [--config CONFIG] [--ckpt CKPT] [--ckpt-dir CKPT_DIR] [--gfpgan-dir GFPGAN_DIR]
                 [--gfpgan-model GFPGAN_MODEL] [--no-half] [--no-half-vae] [--no-progressbar-hiding]
                 [--max-batch-count MAX_BATCH_COUNT] [--embeddings-dir EMBEDDINGS_DIR]
                 [--hypernetwork-dir HYPERNETWORK_DIR] [--localizations-dir LOCALIZATIONS_DIR] [--allow-code]
                 [--medvram] [--lowvram] [--lowram] [--always-batch-cond-uncond] [--unload-gfpgan]
                 [--precision {full,autocast}] [--share] [--ngrok NGROK] [--ngrok-region NGROK_REGION]
                 [--enable-insecure-extension-access] [--codeformer-models-path CODEFORMER_MODELS_PATH]
                 [--gfpgan-models-path GFPGAN_MODELS_PATH] [--esrgan-models-path ESRGAN_MODELS_PATH]
                 [--bsrgan-models-path BSRGAN_MODELS_PATH] [--realesrgan-models-path REALESRGAN_MODELS_PATH]
                 [--scunet-models-path SCUNET_MODELS_PATH] [--swinir-models-path SWINIR_MODELS_PATH]
                 [--ldsr-models-path LDSR_MODELS_PATH] [--clip-models-path CLIP_MODELS_PATH] [--xformers]
                 [--force-enable-xformers] [--deepdanbooru] [--opt-split-attention] [--opt-split-attention-invokeai]
                 [--opt-split-attention-v1] [--disable-opt-split-attention]
                 [--use-cpu {all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer} [{all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer} ...]]
                 [--listen] [--port PORT] [--show-negative-prompt] [--ui-config-file UI_CONFIG_FILE]
                 [--hide-ui-dir-config] [--freeze-settings] [--ui-settings-file UI_SETTINGS_FILE] [--gradio-debug]
                 [--gradio-auth GRADIO_AUTH] [--gradio-img2img-tool {color-sketch,editor}] [--opt-channelslast]
                 [--styles-file STYLES_FILE] [--autolaunch] [--theme THEME] [--use-textbox-seed]
                 [--disable-console-progressbars] [--enable-console-prompts] [--vae-path VAE_PATH]
                 [--disable-safe-unpickle] [--api] [--nowebui] [--ui-debug-mode] [--device-id DEVICE_ID]
                 [--administrator] [--cors-allow-origins CORS_ALLOW_ORIGINS] [--tls-keyfile TLS_KEYFILE]
                 [--tls-certfile TLS_CERTFILE] [--server-name SERVER_NAME]

options:
  -h, --help            show this help message and exit
  --config CONFIG       path to config which constructs model
  --ckpt CKPT           path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to
                        the list of checkpoints and loaded
  --ckpt-dir CKPT_DIR   Path to directory with stable diffusion checkpoints
  --gfpgan-dir GFPGAN_DIR
                        GFPGAN directory
  --gfpgan-model GFPGAN_MODEL
                        GFPGAN model file name
  --no-half             do not switch the model to 16-bit floats
  --no-half-vae         do not switch the VAE model to 16-bit floats
  --no-progressbar-hiding
                        do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware
                        acceleration in browser)
  --max-batch-count MAX_BATCH_COUNT
                        maximum batch count value for the UI
  --embeddings-dir EMBEDDINGS_DIR
                        embeddings directory for textual inversion (default: embeddings)
  --hypernetwork-dir HYPERNETWORK_DIR
                        hypernetwork directory
  --localizations-dir LOCALIZATIONS_DIR
                        localizations directory
  --allow-code          allow custom script execution from webui
  --medvram             enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage
  --lowvram             enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM
                        usage
  --lowram              load stable diffusion checkpoint weights to VRAM instead of RAM
  --always-batch-cond-uncond
                        disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram
  --unload-gfpgan       does not do anything.
  --precision {full,autocast}
                        evaluate at this precision
  --share               use share=True for gradio and make the UI accessible through their site
  --ngrok NGROK         ngrok authtoken, alternative to gradio --share
  --ngrok-region NGROK_REGION
                        The region in which ngrok should start.
  --enable-insecure-extension-access
                        enable extensions tab regardless of other options
  --codeformer-models-path CODEFORMER_MODELS_PATH
                        Path to directory with codeformer model file(s).
  --gfpgan-models-path GFPGAN_MODELS_PATH
                        Path to directory with GFPGAN model file(s).
  --esrgan-models-path ESRGAN_MODELS_PATH
                        Path to directory with ESRGAN model file(s).
  --bsrgan-models-path BSRGAN_MODELS_PATH
                        Path to directory with BSRGAN model file(s).
  --realesrgan-models-path REALESRGAN_MODELS_PATH
                        Path to directory with RealESRGAN model file(s).
  --scunet-models-path SCUNET_MODELS_PATH
                        Path to directory with ScuNET model file(s).
  --swinir-models-path SWINIR_MODELS_PATH
                        Path to directory with SwinIR model file(s).
  --ldsr-models-path LDSR_MODELS_PATH
                        Path to directory with LDSR model file(s).
  --clip-models-path CLIP_MODELS_PATH
                        Path to directory with CLIP model file(s).
  --xformers            enable xformers for cross attention layers
  --force-enable-xformers
                        enable xformers for cross attention layers regardless of whether the checking code thinks you
                        can run it; do not make bug reports if this fails to work
  --deepdanbooru        enable deepdanbooru interrogator
  --opt-split-attention
                        force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch
                        cuda.
  --opt-split-attention-invokeai
                        force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is
                        unavailable.
  --opt-split-attention-v1
                        enable older version of split attention optimization that does not consume all the VRAM it can
                        find
  --disable-opt-split-attention
                        force-disables cross-attention layer optimization
  --use-cpu {all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer} [{all,sd,interrogate,gfpgan,swinir,esrgan,scunet,codeformer} ...]
                        use CPU as torch device for specified modules
  --listen              launch gradio with 0.0.0.0 as server name, allowing to respond to network requests
  --port PORT           launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to
                        7860 if available
  --show-negative-prompt
                        does not do anything
  --ui-config-file UI_CONFIG_FILE
                        filename to use for ui configuration
  --hide-ui-dir-config  hide directory configuration from webui
  --freeze-settings     disable editing settings
  --ui-settings-file UI_SETTINGS_FILE
                        filename to use for ui settings
  --gradio-debug        launch gradio with --debug option
  --gradio-auth GRADIO_AUTH
                        set gradio authentication like "username:password"; or comma-delimit multiple like
                        "u1:p1,u2:p2,u3:p3"
  --gradio-img2img-tool {color-sketch,editor}
                        gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing
  --opt-channelslast    change memory type for stable diffusion to channels last
  --styles-file STYLES_FILE
                        filename to use for styles
  --autolaunch          open the webui URL in the system's default browser upon launch
  --theme THEME         launches the UI with light or dark theme
  --use-textbox-seed    use textbox for seeds in UI (no up/down, but possible to input long seeds)
  --disable-console-progressbars
                        do not output progressbars to console
  --enable-console-prompts
                        print prompts to console when generating with txt2img and img2img
  --vae-path VAE_PATH   Path to Variational Autoencoders model
  --disable-safe-unpickle
                        disable checking pytorch models for malicious code
  --api                 use api=True to launch the api with the webui
  --nowebui             use api=True to launch the api instead of the webui
  --ui-debug-mode       Don't load model to quickly launch UI
  --device-id DEVICE_ID
                        Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed
                        before)
  --administrator       Administrator rights
  --cors-allow-origins CORS_ALLOW_ORIGINS
                        Allowed CORS origins
  --tls-keyfile TLS_KEYFILE
                        Partially enables TLS, requires --tls-certfile to fully function
  --tls-certfile TLS_CERTFILE
                        Partially enables TLS, requires --tls-keyfile to fully function
  --server-name SERVER_NAME
                        Sets hostname of server

尝试构造如下运行参数,--use-cpu all使所有模块均使用CPU计算,--lowram --always-batch-cond-uncond使用低内存配置选项,程序可以成功运行。

(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py --lowram --always-batch-cond-uncond --use-cpu all
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing requirements for Web UI
Launching Web UI with arguments: --lowram --always-batch-cond-uncond --use-cpu all
Warning: caught exception 'Expected a cuda device, but got: cpu', memory monitor disabled
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Loading weights [7460a6fa] from E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion\sd-v1-4.ckpt
Global Step: 470000
Applying cross attention optimization (Doggettx).
Model loaded.
Loaded a total of 0 textual inversion embeddings.
Embeddings:
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.

然而,开始作画时提示RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'错误!如果安装网上的处理方法,将half函数在工程中替换为float函数,则会出现device不匹配问题。

Traceback (most recent call last):
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\ui.py", line 185, in f
    res = list(func(*args, **kwargs))
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\webui.py", line 57, in f
    res = func(*args, **kwargs)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\txt2img.py", line 48, in txt2img
    processed = process_images(p)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\processing.py", line 423, in process_images
    res = process_images_inner(p)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\processing.py", line 508, in process_images_inner
    uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\prompt_parser.py", line 138, in get_learned_conditioning
    conds = model.get_learned_conditioning(texts)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\repositories\stable-diffusion\ldm\models\diffusion\ddpm.py", line 558, in get_learned_conditioning
    c = self.cond_stage_model(c)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
    return forward_call(*input, **kwargs)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\sd_hijack.py", line 338, in forward
    z1 = self.process_tokens(tokens, multipliers)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\extensions\aesthetic-gradients\aesthetic_clip.py", line 202, in __call__
    z = self.process_tokens(remade_batch_tokens, multipliers)
  File "E:\workspace\02_Python\novalai\stable-diffusion-webui\modules\sd_hijack.py", line 353, in process_tokens
    outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 722, in forward
    return self.text_model(
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 643, in forward
    encoder_outputs = self.encoder(
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 574, in forward
    layer_outputs = encoder_layer(
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\anaconda3\envs\novelai\lib\site-packages\transformers\models\clip\modeling_clip.py", line 316, in forward
    hidden_states = self.layer_norm1(hidden_states)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\module.py", line 1190, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\modules\normalization.py", line 190, in forward
    return F.layer_norm(
  File "D:\anaconda3\envs\novelai\lib\site-packages\torch\nn\functional.py", line 2515, in layer_norm
    return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'

考虑到--use-cpu参数可以指定模块,则尝试使工程中的部分模块用CPU计算,其余在可用内存方位内用GPU计算,最终构造参数如下,项目可成功作画。

然而,此方式作画效率非常低,一般每张图片约5-6分钟。当参数设置较大时,会达到数小时。因此如果有条件可以升级计算机的显卡配置,或租赁云服务器效果会更好。


(novelai) E:\workspace\02_Python\novalai\stable-diffusion-webui>python launch.py --lowram --always-batch-cond-uncond  --precision full --no-half --opt-split-attention-v1 --use-cpu sd --autolaunch
Python 3.10.6 | packaged by conda-forge | (main, Oct 24 2022, 16:02:16) [MSC v.1916 64 bit (AMD64)]
Commit hash: b8f2dfed3c0085f1df359b9dc5b3841ddc2196f0
Installing requirements for Web UI
Launching Web UI with arguments: --lowram --always-batch-cond-uncond --precision full --no-half --opt-split-attention-v1 --use-cpu sd
Warning: caught exception 'Expected a cuda device, but got: cpu', memory monitor disabled
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Loading weights [7460a6fa] from E:\workspace\02_Python\novalai\stable-diffusion-webui\models\Stable-diffusion\sd-v1-4.ckpt
Global Step: 470000
Applying v1 cross attention optimization.
Model loaded.
Loaded a total of 0 textual inversion embeddings.
Embeddings:
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [06:30<00:00, 19.50s/it]
Total progress: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [06:10<00:00, 18.51s/it]

参考文献:

AI作画保姆级教程来了!逆天,太强了!

【作者:墨叶扶风http://blog.csdn.net/yefufeng】文章来源地址https://www.toymoban.com/news/detail-813017.html

到了这里,关于【AI作画】使用stable-diffusion-webui搭建AI作画平台的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无显卡也能AI作画 | Colab + Stable Diffusion WebUI

    事情起因是这样的,我之前写了如何在linux上用Stable Diffusion WebUI。 里边提到我迟迟没有弄webui是因为我笔记本A卡,台式机显卡带不动。所以无奈只能使用学校服务器搭一个。 当时有人说我,你自己电脑不行怎么不用colab,我当时懒得弄。 原因如下: 服务器在我们本地,不用

    2024年02月10日
    浏览(78)
  • 建Stable-Diffusion-Webui的AI

    人工智能,丹青圣手,全平台(原生/Docker)构建Stable-Diffusion-Webui的AI绘画库教程(Python3.10/Pytorch1.13.0) - 知乎

    2024年02月16日
    浏览(52)
  • novel Ai (stable-diffusion-webui)安装

    环境 英伟达显卡 win11 可以连接github并下载内容 安装 python 3.10.6及以上,安装并添加到path 安装 cuDNN 和 CUDAToolKit 先更新主机的显卡驱动,检查系统的显卡驱动版本的CUDA版本(电脑右下角:NVIDIA设置 - NVIDIA控制面板 - 左下角:系统信息 - 选项卡:组件 - 3D设置找CUDA:产品名称)

    2024年02月02日
    浏览(43)
  • AI绘图入门 安装 stable-diffusion-webui

    先看样张: https://www.python.org/downloads/ Git - Downloads (git-scm.com) 1. 新建文件夹 (不能有中文,建议放在空闲比较多的硬盘上),然后再文件夹打开命令行 2. 克隆 Nvidia显卡 AMD显卡 AMD GPU 说明 CPU 选择上面任意一个都可以 下载慢可以请求头加https://ghproxy.com/ 如: https://ghproxy.com/

    2024年02月06日
    浏览(56)
  • AIGC-Stable Diffusion Webui-AI作画初体验

    一、项目地址 :传送门:github:stable-diffusion-webui 二、安装方式 :本地安装 or Google Colab.(下文介绍中关于安装的部分均以本地安装为例) 本地安装 : 1、git 2、python(推荐3.10.8) 3、下载git仓库代码 4、配置:python及git路径 5、启动:(windows) (第一次启动会很慢,会下载安装很多文

    2024年02月13日
    浏览(47)
  • stable-diffusion-webui教程(AI绘画真人教程)

    首先给大家看看效果,这个就是新一代的AI绘画的造物,是不是很漂亮,AI自定义老婆从此不再是梦了。 下面就给大家演示一下,这个软件如何部署,和部署完成之后如何获取相关的,和模型,然后大家也可以自己做出来自己喜欢的AI老婆。 这里是别的大佬的项目的地

    2024年02月02日
    浏览(56)
  • 【AI作画】stable diffusion webui Linux虚拟机 Centos 详细部署教程

    环境:虚拟机Centos7、6处理器、8G内存+10G交换内存、没有GPU使用CPU硬解 windows版本的可以直接使用整合包:看评论的转载链接自行下载,解压即可用 提示:这里可能source后版本是1.8.3,只需要重新yum remove git source /etc/profile 提示:注意最后修改vim 和 urlgrabber-ext-down 提示:我这里

    2024年02月11日
    浏览(50)
  • AI绘画stable-diffusion-webui指定GPU运行

    在cmd_args.py文件中,进行运行参数的设定,其中可以指定gpu信息 其中: 命令行运行的时候指定具体gpu的id,例如: 表示使用id为3的gpu卡运行,其中--listen表示允许远程访问。

    2024年02月11日
    浏览(44)
  • AI绘画stable-diffusion-webui+ChilloutMix云部署

    腾讯GPU实验室:https://cloud.tencent.com/act/pro/gpu-study?from=10680 实例规格:GPU计算型GN7 | GN7.2XLARGE32 系统:Ubuntu Server 20.04 LTS 64位 根据安装要求python版本需要为3.10.6. 下载python3.10.6. 网络慢的话手动上传到服务器。 解压并进入该目录,后续的所有命令均在该目录中执行: 1.下载代码

    2024年01月20日
    浏览(61)
  • Novel ai(stable-diffusion-webui)的本地部署经历

    整体参考的就是下面的网站的内容,采用的里面是Anaconda搭建虚拟环境部署的步骤(网站里面用的Miniconda其实上和Anaconda整体思路是一样的) tip:Anaconda的配置是比较简单的,可以直接在网上搜索,需要注意的是建议先卸载电脑上的python再安装Anaconda --GUIDE-- 下面就是网站中用

    2024年02月04日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包