Retinexformer 论文阅读笔记

这篇具有很好参考价值的文章主要介绍了Retinexformer 论文阅读笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement

retinexformer,论文阅读笔记,论文阅读,笔记

  • 清华大学、维尔兹堡大学和苏黎世联邦理工学院在ICCV2023的一篇transformer做暗图增强的工作,开源。
  • 文章认为,Retinex的 I = R ⊙ L I=R\odot L I=RL假设干净的R和L,但实际上由于噪声,并不干净,所以分别为L和R添加干扰项,把公式改成如下:
    retinexformer,论文阅读笔记,论文阅读,笔记
  • 本文采用先预测 L ‾ \overline L L再使用 I ⊙ L ‾ I\odot\overline L IL来预测增强结果的retinex范式。结合上面公式可以得到:
    retinexformer,论文阅读笔记,论文阅读,笔记
  • 其中第一项是因为假设 L ⊙ L ‾ = 1 L\odot\overline L=1 LL=1,所以第一项是我们要的增加结果,是干净的R,而第二项是由于 L ^ \hat L L^引进的干扰,即过曝或欠曝的干扰,第三项是 R ^ \hat R R^引进的干扰,即噪声和伪影。第二项第三项统称为corruption,得到下式:
    retinexformer,论文阅读笔记,论文阅读,笔记
    由于 I l u I_{lu} Ilu还包含corruption,它并不是我们要的最终增强结果。我们可以先估计 I l u I_{lu} Ilu,再将其中的C去掉,得到最终的增强结果
  • 网络结构如下图所示,其中 L p L_p Lp是图片的三通道均值。下面的图对模块的展开方式有点奇怪。其实就是对concate后的亮度图和原图,提取 L ‾ \overline L L和特征 F l u F_{lu} Flu,然后用 F l u F_{lu} Flu对后面的修复过程中transformer 的V 进行rescale,也就是用在了illumination-guided attention block。后面的修复过程就是把初步的增强结果进行细化,抑制过曝区域,去噪的过程。

retinexformer,论文阅读笔记,论文阅读,笔记文章来源地址https://www.toymoban.com/news/detail-813148.html

  • 实验结果如下图所示,只给了PSNR和SSIM,不过没有和LLFlow比,所以区区22的PSNR也敢称SOTA。
    retinexformer,论文阅读笔记,论文阅读,笔记
  • 也比较了exdark上的增强结果和多个数据集上的user study
    retinexformer,论文阅读笔记,论文阅读,笔记
  • 个人感觉这篇工作没什么亮点,就是搞网络结构,但思路又不是特别亮眼,效果也没有特别好,还没有给lpips niqe LOE等指标。

到了这里,关于Retinexformer 论文阅读笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读:Segment Anything之阅读笔记

    引言 论文:Segment Anything是Meta出的图像语义分割的算法。这个算法因其强大的zero-shot泛化能力让人惊艳,这不抽空拿来学习了一下。 该算法的代码写得很清楚、简洁和规范,读来让人赏心悦目。推荐去看源码,很有意思。 本篇文章,将以问答形式来解读阅读过程中遇到的困

    2024年02月13日
    浏览(37)
  • 论文阅读笔记2:NetVLAD

    题目:NetVLAD: CNN Architecture for Weakly Supervised Place Recognition:、 团队: PSL Research University/Tokyo Institute of Technology 解决的问题: 我们解决了大规模视觉位置识别的问题,其任务是快速准确地识别给定查询照片的位置 创新点: 这篇文章主要有3个创新点: 1. 为场景识别任务构造出

    2024年02月11日
    浏览(43)
  • 论文阅读笔记整理(持续更新)

    FAST 2021 Paper 泛读笔记 针对LSM树同时优化读写性能的问题,现有方法通过压缩提升读性能,但会导致读放大或写放大。作者利用新存储硬件的性能,随机读和顺序读性能相近,因此提出构建逻辑排序视图优化范围查询,因为减少了真正的压缩操作,同时减少了写放大。 ATC 2

    2024年01月23日
    浏览(47)
  • PointMixer论文阅读笔记

    MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set, inter-set

    2024年02月19日
    浏览(38)
  • GPT-3 论文阅读笔记

    GPT-3模型出自论文《Language Models are Few-Shot Learners》是OpenAI在2020年5月发布的。 论文摘要翻译 :最近的工作表明,通过对大量文本进行预训练,然后对特定任务进行微调(fine-tuning),在许多NLP任务和基准测试上取得了实质性的进展。虽然这种方法在架构上通常与任务无关,但它

    2024年02月12日
    浏览(41)
  • 3D卷积网络论文阅读笔记

    数据集 BraTS 2020 数据增强方法 • Flipping翻转: 以1/3的概率随机沿着三个轴之一翻转 • Rotation旋转: 从限定范围(0到 15◦或到30◦或到60◦或到90◦)的均匀分布中随机选择角度旋转 • Scale缩放: 通过从范围为±10%或为±20%的均匀分布中随机选择的因子,对每个轴进行缩放 • Br

    2023年04月10日
    浏览(46)
  • LIME论文阅读笔记

    这是暗图增强领域一篇经典的传统方法论文,发表在TIP这个顶刊 文章基于的是这样一个公式: L = R ⋅ T L=Rcdot T L = R ⋅ T 其中, L L L 是暗图, R R R 是反射分量, T T T 是illumination map,并且对于彩色图像来说,三通道都共享相同的illumination map。我们可以使用各种方法估计 T

    2024年02月09日
    浏览(45)
  • InstructGPT 论文阅读笔记

    目录 简介 数据集                                 详细实现 实验结果 参考资料 InstructGPT 模型是在论文《Training language models to follow instructions with human feedback》被提出的,OpenAI在2022年1月发布了这篇文章。 论文摘要翻译 :把语言模型做得更大并不意味着让它们更好的遵循

    2024年02月01日
    浏览(57)
  • GAN 论文阅读笔记(6)

    原论文:MyStyle++: A Controllable Personalized Generative Prior 发表于:CVPR2023 注:本篇论文为 《MyStyle: A Personalized Generative Prior》 的改进,当遇到不理解的地方可以参照前一篇阅读笔记 图 1:MyStyle++ 在图像合成,编辑和增强上的表现 1:MyStyle MyStyle 是一种 GAN 模型的改进模型。其打算

    2024年01月18日
    浏览(48)
  • 论文阅读笔记(一)

    发表年份: 2016 主要贡献: 提出了Multimodal Opinion-level Sentiment Intensity (MOSI) 数据集 提出了多模态情绪分析未来研究的基线 提出了一种新的多模态融合方式 在这些在线意见视频中研究情绪主要面临的挑战和解决方法: 挑战 解决方法 这些视频的不稳定性和快节奏性。演讲者经

    2023年04月09日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包