Go后端开发 -- 反射reflect && 结构体标签

这篇具有很好参考价值的文章主要介绍了Go后端开发 -- 反射reflect && 结构体标签。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Go后端开发 – 反射reflect && 结构体标签


一、反射reflect

1.编程语言中反射的概念

在计算机科学领域,反射是指一类应用,它们能够自描述和自控制。也就是说,这类应用通过采用某种机制来实现对自己行为的描述(self-representation)和监测(examination),并能根据自身行为的状态和结果,调整或修改应用所描述行为的状态和相关的语义。

每种语言的反射模型都不同,并且有些语言根本不支持反射。Golang语言实现了反射,反射机制就是在运行时动态的调用对象的方法和属性,官方自带的reflect包就是反射相关的,只要包含这个包就可以使用。
Golang的gRPC也是通过反射实现的。

2.interface 和反射

Golang关于类型设计的一些原则

  • 变量包括(type, value)两部分

  • type 包括 static typeconcrete type,简单来说 static type是你在编码是看见的类型(如int、string),concrete type是runtime系统看见的类型

  • 类型断言能否成功,取决于变量的concrete type,而不是static type. 因此,一个 reader变量如果它的concrete type也实现了write方法的话,它也可以被类型断言为writer.
    Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 反射就是找到当前interface变量的concrete type具体类型,也可以得到当前变量的值

  • 反射,就是建立在类型之上的,Golang的指定类型的变量的类型是静态的(也就是指定int、string这些的变量,它的type是static type),在创建变量的时候就已经确定,反射主要与Golang的interface类型相关(它的type是concrete type),只有interface类型才有反射一说

3.变量内置的pair结构

在Golang的实现中,每个interface变量都有一个对应pair,pair中记录了实际变量的值和类型:(value, type)

  • value是实际变量值,type是实际变量的类型。一个interface{}类型的变量包含了2个指针,一个指针指向值的类型【对应concrete type】,另外一个指针指向实际的值【对应value】。

实例1:

package pair_go

import "fmt"

func Pair() {
	var str string
	// pair<type:string, value:"lisi">
	str = "lisi"

	var allType interface{}
	// str的pair传递给allType了
	// pair<type:string, value:"lisi">
	allType = str

	value, ok := allType.(string)
	if ok {
		fmt.Println(value)
	}
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 上述实例中,变量str的pair为pair<type:string, value:"lisi">,将str赋值给interface{}类型的变量allType,在赋值的同时,pair也会传递,因此allType的pair为pair<type:string, value:"lisi">

实例2:

package pair_go

import (
	"fmt"
	"io"
	"os"
)

func Pair() {
	//以读写状态打开当前Linux终端
	//tty pair<tye:*os.File, value:"/dev/tty"文件描述符>
	tty, err := os.OpenFile("/dev/tty", os.O_RDWR, 0)
	if err != nil {
		fmt.Println("open file error", err)
		return
	}

	// r pair<tye:  value:  >
	var r io.Reader
	// r pair<tye:*os.File, value:"/dev/tty"文件描述符>
	r = tty

	// w pair<tye:  value:  >
	var w io.Writer
	// w pair<tye:*os.File, value:"/dev/tty"文件描述符>
	w = r.(io.Writer)

	w.Write([]byte("hello, this is a test!!\n"))
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 上述实例中,以读写状态打开当前Linux终端,变量tty的pair是tty pair<tye:*os.File, value:"/dev/tty"文件描述符>
  • io.Reader类型是interface类型的,包含一个接口,将一个文件读到p指向的内存中,给r赋值tty后,此时r变量的pair是pair<tye:*os.File, value:"/dev/tty"文件描述符>
    Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言
  • io.Writer类型与io.Reader类似,也是interface类型,将r强转为io.Writer类型并赋值给w,此时w的pair为pair<tye:*os.File, value:"/dev/tty"文件描述符>
    Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言
  • 以上实例说明一个变量在赋值的时候,pair也会传递给被赋值的变量,并且该pair是连续不变的

实例3:

  • 两个interface类型都被同一个结构体类型重写,那么这两个interface类型是可以互相断言的,因为其具体的类型是一致的
package pair_go

import (
	"fmt"
)

type Reader interface {
	ReadBook()
}

type Writer interface {
	WriteBook()
}

// 具体的类型
type Book struct {
}

func (b *Book) ReadBook() {
	fmt.Println("Read a book")
}

func (b *Book) WriteBook() {
	fmt.Println("Write a book")
}

func Pair() {
	// b pair<type:*Book, value:Book{}地址>
	b := &Book{}

	// r pair<type:, value:>
	var r Reader
	// r pair<type:*Book, value:Book{}地址>
	r = b
	r.ReadBook()

	// r pair<type:, value:>
	var w Writer
	// r pair<type:*Book, value:Book{}地址>
	w = r.(Writer) // 此处的断言为什么会成功,因为w r具体的type是一致的
					//因为Book重写了Reader和Writer,因此Reader和Writer都能指向Book对象,因此他们两个之间是能够互相断言的
	w.WriteBook()
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 上述实例中,Reader和Writer是两个interface类型,分别有一个接口ReadBook和WriteBook,Book结构体分别重写了这两个接口,因此Reader和Writer的对象都能够指向Book类型的对象
  • 在Reader对象r指向了Book对象之后,Writer对象w可以通过r.(Writer)断言,是因为w和r具体的type是一致的,Book重写了Reader和Writer,因此Reader和Writer都能指向Book对象,因此他们两个之间是能够互相断言的

4.reflect的基本功能TypeOf和ValueOf

既然反射就是用来检测存储在接口变量内部(值value;类型concrete type) pair对的一种机制。那么在Golang的reflect反射包中有什么样的方式可以让我们直接获取到变量内部的信息呢? 它提供了两种类型(或者说两个方法)让我们可以很容易的访问接口变量内容,分别是reflect.ValueOf() reflect.TypeOf(),看看官方的解释

// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i.  ValueOf(nil) returns the zero 
func ValueOf(i interface{}) Value {...}

//ValueOf用来获取输入参数接口中的数据的值,如果接口为空则返回0


// TypeOf returns the reflection Type that represents the dynamic type of i.
// If i is a nil interface value, TypeOf returns nil.
func TypeOf(i interface{}) Type {...}

//TypeOf用来动态获取输入参数接口中的值的类型,如果接口为空则返回nil
  • reflect.TypeOf()是获取pair中的type,reflect.ValueOf()获取pair中的value
  1. reflect.TypeOf: 直接给到了我们想要的type类型,如float64、int、各种pointer、struct 等等真实的类型
  2. reflect.ValueOf:直接给到了我们想要的具体的值,如1.2345这个具体数值,或者类似&{1 “Allen.Wu” 25} 这样的结构体struct的值
  3. 也就是说明反射可以将“接口类型变量”转换为“反射类型对象”,反射类型指的是reflect.Type和reflect.Value这两种

实例1:

package reflect_go

import (
	"fmt"
	"reflect"
)

func reflectNum(arg interface{}) {
	fmt.Println("type: ", reflect.TypeOf(arg))
	fmt.Println("value: ", reflect.ValueOf(arg))
}

func Reflect() {
	var num1 float64 = 1.2345
	reflectNum(num1)
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

5.从relfect.Value中获取接口interface的信息

  • 当执行reflect.ValueOf(interface)之后,就得到了一个类型为relfect.Value变量,可以通过它本身的Interface()方法获得接口变量的真实内容,然后可以通过类型判断进行转换,转换为原有真实类型。不过,我们可能是已知原有类型,也有可能是未知原有类型,因此,下面分两种情况进行说明。
  1. 已知原有类型【进行“强制转换”】
    已知类型后转换为其对应的类型的做法如下,直接通过Interface方法然后强制转换,如下:
  • Golang 对类型要求非常严格,类型一定要完全符合
realValue := value.Interface().(已知的类型)

实例1

package main

import (
    "fmt"
    "reflect"
)

func main() {
	var num float64 = 1.2345

	pointer := reflect.ValueOf(&num)
	value := reflect.ValueOf(num)

	// 可以理解为“强制转换”,但是需要注意的时候,转换的时候,如果转换的类型不完全符合,则直接panic
	// Golang 对类型要求非常严格,类型一定要完全符合
	// 如下两个,一个是*float64,一个是float64,如果弄混,则会panic
	convertPointer := pointer.Interface().(*float64) //返回的是*float64类型的变量
	convertValue := value.Interface().(float64) // 返回的是float64类型的变量
	convertInterface := value.Interface() // 返回的是Interface()类型的变量

	fmt.Printf("%T\n", convertPointer)
	fmt.Println(convertPointer)

	fmt.Printf("%T\n", convertValue)
	fmt.Println(convertValue)

	val, ok := convertInterface.(float64) //interface类型的变量可以断言
	if ok {
		fmt.Printf("convertInterface is %T type\n", val)
	}
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 上述实例获取了num变量的relfect.Value变量,可以通过value.Interface().(已知的类型)方法进行强制类型转换
  • value.Interface().(已知的类型)返回的值类型是具体的类型,value.Interface()返回的是interface类型
  • value.Interface().(已知的类型)转换的时候,如果转换的类型不完全符合,则直接panic,类型要求非常严格!
  • 转换的时候,要区分是指针还是值
  • 也就是说反射可以将“反射类型对象”再重新转换为“接口类型变量”
  1. 未知原有类型【遍历探测其Filed】
  • 可以通过reflect包内的函数获取结构体的字段及方法
  • 通过type.NumField()可以获取结构体字段的数量,type.Field(i)可以获取第i个字段,进而获取字段的类型和字段名
  • 通过value.Field(i).Interface()可以获取第i个字段的值
  • 通过type.NumMethod()可以获取成员方法的数量,type.Method(i)获取第i个成员方法,进而获取方法的类型和方法名
  • 也就是说反射可以将“反射类型对象”再重新转换为“接口类型变量”

实例2:

package reflect_go

import (
	"fmt"
	"reflect"
)

type User struct {
	Name string
	Sex  string
	Age  int
}

func (usr User) Call() {
	fmt.Println("user os called..")
	fmt.Println(usr)
}

func Reflect() {
	User1 := User{"zhangsan", "male", 16}
	DoFiledAndMethod(User1)
}

func DoFiledAndMethod(input interface{}) {
	//获取type
	inputType := reflect.TypeOf(input)
	fmt.Println("input type: ", inputType)
	//获取value
	inputValue := reflect.ValueOf(input)
	fmt.Println("input value: ", inputValue)
	//通过type获取里面的字段
	//1.获取interface的reflect.Type,通过Type得到NumField,进行遍历
	//2.得到每个field,数据类型
	//3.通过field中有一个Interface()方法,得到对应的value
	for i := 0; i < inputType.NumField(); i++ {
		field := inputType.Field(i)              //取出第i个字段
		value := inputValue.Field(i).Interface() //取出第i个字段的值

		fmt.Println(field.Name, field.Type, value)
	}

	//通过type获取里面的方法
	for i := 0; i < inputType.NumMethod(); i++ {
		m := inputType.Method(i)
		fmt.Println(m.Name, m.Type)
	}
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

6.通过reflect.Value设置实际变量的值

  • reflect.Value是通过reflect.ValueOf(X)获得的,只有当X是指针的时候,才可以通过reflec.Value修改实际变量X的值,即:要修改反射类型的对象就一定要保证其值是“addressable”的

实例:

package reflect_go

import (
	"fmt"
	"reflect"
)

type User struct {
	Name string
	Sex  string
	Age  int
}

func (usr User) Call() {
	fmt.Println("user os called..")
	fmt.Println(usr)
}

func Reflect() {
	User1 := User{"zhangsan", "male", 16}
	
	ChangeValue(User1)
}

func ChangeValue(input interface{}) {
	// 通过reflect.ValueOf获取num中的reflect.Value,注意,参数必须是指针才能修改其值
	pointer := reflect.ValueOf(&input)
	//Elem返回v持有的接口保管的值的Value封装,或者v持有的指针指向的值的Value封装。
	//如果v的Kind不是Interface或Ptr会panic;如果v持有的值为nil,会返回Value零值。
	newValue := pointer.Elem()

	fmt.Println("pointer: type of pointer: ", pointer.Type())
	fmt.Println("pointer: settability of pointer: ", pointer.CanSet())

	fmt.Println("newValue: type of pointer: ", newValue.Type())
	fmt.Println("newValue: settability of pointer: ", newValue.CanSet())

	//重新赋值
	u := User{"lisi", "male", 25}
	val := reflect.ValueOf(u)
	newValue.Set(val)

	fmt.Println("new value: ", input)
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 在上述实例中,使用interface{}通用接口接收User类型的数据,pointer被赋值为reflect.ValueOf(&input),也就是input的指针的Value,只有通过reflect拿到其指针,才能够修改数据
  • reflect.Value.Elem()表示获取原始值对应的反射对象,只有原始对象才能修改,当前反射对象是不能修改的,会返回v持有的接口保管的值的Value封装,或者v持有的指针指向的值的Value封装,如果v的类型不是interface或者指针,则pointer.Elem()会panic,我们通过Elem()拿到了pointer指针指向的Value,可以通过该Value更改原数据的值
  • 也就是说如果要修改反射类型对象,其值必须是“addressable”【对应的要传入的是指针,同时要通过Elem方法获取原始值对应的反射对象
  • newValue.CantSet()表示是否可以重新设置其值,如果输出的是true则可修改,否则不能修改
  • 通过输出pointer和newValue变量的Type()CanSet(),可以看出:pointer的类型是*interface {},其值是不可以更改的;newValue的类型是interface {},其值是可以更改的;
  • 我们可以通过Set()方法更改实际变量的值,注意Set()参数的类型需要是reflect.Value,因此还需要将新的值通过reflect.ValueOf()提取Value,再传入Set();如果实际变量是一般类型,可以通过SetInt()SetFloat()方法直接更改
  • 最终输出input变量的值,发现其被更改成功

7.通过reflect.ValueOf来进行方法的调用

这算是一个高级用法了,前面我们只说到对类型、变量的几种反射的用法,包括如何获取其值、其类型、如果重新设置新值。但是在工程应用中,另外一个常用并且属于高级的用法,就是通过reflect来进行方法【函数】的调用。比如我们要做框架工程的时候,需要可以随意扩展方法,或者说用户可以自定义方法,那么我们通过什么手段来扩展让用户能够自定义呢?关键点在于用户的自定义方法是未可知的,因此我们可以通过reflect来搞定

  • 要通过反射来调用起对应的方法,必须要先通过reflect.ValueOf(interface)来获取到reflect.Value,得到“反射类型对象”后才能做下一步处理
  • reflect.Value.MethodByName:需要指定准确真实的方法名字,如果错误将直接panic,MethodByName返回一个函数值对应的reflect.Value方法的名字。
  • []reflect.Value,这个是最终需要调用的方法的参数,可以没有或者一个或者多个,根据实际参数来定。
  • reflect.Value.Call() 这个方法,将最终调用真实的方法,参数务必保持一致,如果reflect.Value的类型不是一个方法,那么将直接panic。
  • 本来可以用u.ReflectCallFuncXXX直接调用的,但是如果要通过反射,那么首先要将方法注册,也就是MethodByName,然后通过反射调用methodValue.Call

实例1:

package reflect_go

import (
	"fmt"
	"reflect"
)

type User struct {
	Name string
	Sex  string
	Age  int
}

func (usr User) ReflectCallFuncHasArgs(name string, age int) {
	fmt.Println("ReflectCallFuncHasArgs name:", name, "age", age)
}

func (usr User) ReflectCallFuncNoArgs() {
	fmt.Println("ReflectCallFuncNoArgs")
}

func Reflect() {
	User1 := User{"zhangsan", "male", 16}

	callFunc(User1)
}

func callFunc(input interface{}) {
	//获取Value对象
	getValue := reflect.ValueOf(input)

	//有参调用
	//获取方法,一定要指定参数为正确的方法名
	method1 := getValue.MethodByName("ReflectCallFuncHasArgs")
	//参数列表
	args := []reflect.Value{reflect.ValueOf("xiaozhang"), reflect.ValueOf(18)}
	//调用
	method1.Call(args)

	//无参调用
	method2 := getValue.MethodByName("ReflectCallFuncNoArgs")
	//无参,也要传入空的args
	args = make([]reflect.Value, 0)
	//或者 args2 = []reflect.Value{}
	method2.Call(args)
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

  • 上述实例中,args为参数列表,是[]reflect.Value{}类型的,需要传入该函数所需参数的reflect.Value,若函数无参,则args为空即可;

通过reflect.Type可以获取方法

package reflect_go

import (
	"fmt"
	"reflect"
)

type User struct {
	Name string
	Sex  string
	Age  int
}

func (usr User) ReflectCallFuncHasArgs(name string, age int) {
	fmt.Println("ReflectCallFuncHasArgs name:", name, "age", age)
}

func (usr User) ReflectCallFuncNoArgs() {
	fmt.Println("ReflectCallFuncNoArgs")
}

func Reflect() {
	User1 := User{"zhangsan", "male", 16}

	callFunc(User1)
}

func callFunc(input interface{}) {
	//获取Value对象
	getType := reflect.TypeOf(input)

	//获取方法
	for i := 0; i < getType.NumMethod(); i++ {
		method := getType.Method(i)
		fmt.Println("name:", method.Name, "type:", method.Type)
	}
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

8.Golang的反射reflect性能

Golang的反射很慢,这个和它的API设计有关。在 java 里面,我们一般使用反射都是这样来弄的。

Field field = clazz.getField("hello");
field.get(obj1);
field.get(obj2);

这个取得的反射对象类型是 java.lang.reflect.Field。它是可以复用的。只要传入不同的obj,就可以取得这个obj上对应的 field。

但是Golang的反射不是这样设计的:

type_ := reflect.TypeOf(obj)
field, _ := type_.FieldByName("hello")

这里取出来的 field 对象是 reflect.StructField 类型,但是它没有办法用来取得对应对象上的值。如果要取值,得用另外一套对object,而不是type的反射

type_ := reflect.ValueOf(obj)
fieldValue := type_.FieldByName("hello")

这里取出来的 fieldValue 类型是 reflect.Value,它是一个具体的值,而不是一个可复用的反射对象了,每次反射都需要malloc这个reflect.Value结构体,并且还涉及到GC。

Golang reflect慢主要有两个原因

  • 涉及到内存分配以及后续的GC;
  • reflect实现里面有大量的枚举,也就是for循环,比如类型之类的.

9.reflect总结

上述详细说明了Golang的反射reflect的各种功能和用法,都附带有相应的示例,相信能够在工程应用中进行相应实践,总结一下就是:

  • 反射可以大大提高程序的灵活性,使得interface{}有更大的发挥余地
    • 反射必须结合interface才玩得转
    • 变量的type要是concrete type的(也就是interface变量)才有反射一说
  • 反射可以将“接口类型变量”转换为“反射类型对象”
    • 反射使用 TypeOf ValueOf 函数从接口中获取目标对象信息
  • 反射可以将“反射类型对象”转换为“接口类型变量
    • reflect.value.Interface().(已知的类型)
    • 遍历reflect.Type的Field获取其Field
  • 反射可以修改反射类型对象,但是其值必须是“addressable”
    • 想要利用反射修改对象状态,前提是 interface.data 是 settable,即 pointer-interface
  • 通过反射可以“动态”调用方法
  • 因为Golang本身不支持模板,因此在以往需要使用模板的场景下往往就需要使用反射(reflect)来实现

10.reflect的基本原理

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

二、结构体标签

1.结构体标签的作用

结构体标签需要通过反射来实现;

  • 结构体标签是定义在结构体元素之后的,通过``来标识,标签是key:value结构:
type Resume struct {
	Name string `info:"name" doc:"我的名字"`
	Sex  string `info:"sex"`
}
  • 结构体标签的主要作用是其他的包再倒入当前结构体属性的时候,来判断该属性对其他包的作用,起到说明的作用

2.得到结构体标签

  • 首先通过reflect.TypeOf(input).Elem()来得到结构体的所有元素(注意:input的类型需要是interface{}或者指针)
  • 再通过type.Field(i).Tag.Get(key)来获取标签的key对应的value
package struct_tag

import (
	"fmt"
	"reflect"
)

// Golang允许向结构体字段后面绑定标签,使用kv格式
// 主要作用是其他的包再倒入当前结构体属性的时候,来判断该属性对其他包的作用,起到说明的作用
type Resume struct {
	Name string `info:"name" doc:"我的名字"`
	Sex  string `info:"sex"`
}

func findTag(input interface{}) {
	//通过reflect来得到标签
	t := reflect.TypeOf(input).Elem() // 得到当前结构体的全部元素
	for i := 0; i < t.NumField(); i++ {
		tagInfo := t.Field(i).Tag.Get("info") // 通过标签的key找到标签的value
		tagDoc := t.Field(i).Tag.Get("doc")
		fmt.Println("info:", tagInfo, "doc", tagDoc)
	}
}

func StructTag() {
	var re Resume
	findTag(&re)
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言

3.结构体标签在json中的应用

  • 可以使用encoding/json库中的方法将结构体对象转换为json文件格式
  • 如果需要转换为json文件,则需要给结构体字段打上json标签
  • json.Marshal(movie1)方法会将带json标签的结构体对象转换为json格式的字符串,格式为标签value:字段的值
  • json.Unmarshal(jsonStr, &my_movie)方法会将json格式的字符串转换为相应的结构体类型,注意结构体需要传入的是对象的地址
package struct_tag

import (
	"encoding/json"
	"fmt"
	"reflect"
)

// 可以使用encoding/json将数据转换为json文件格式
// 如果需要转换为json文件,则需要给结构体字段打上json标签
type Movie struct {
	Title  string   `json:"title"`
	Year   int      `json:"year"`
	Price  int      `json:"price"`
	Actors []string `json:"actors"`
}

func ConvertToJson() {
	movie1 := Movie{"让子弹飞", 2009, 50, []string{"姜文,葛优,周润发"}}

	//编码的过程 struct --> json
	jsonStr, err := json.Marshal(movie1)
	if err != nil {
		fmt.Println("json marshal error", err)
		return
	}

	fmt.Printf("jsonStr = %s\n", jsonStr)

	//解码的过程 jsonStr --> struct
	my_movie := Movie{}
	err = json.Unmarshal(jsonStr, &my_movie)
	if err != nil {
		fmt.Println("json unmarshal error", err)
		return
	}
	fmt.Println(my_movie)
}

Go后端开发 -- 反射reflect && 结构体标签,Golang,golang,开发语言文章来源地址https://www.toymoban.com/news/detail-813313.html

到了这里,关于Go后端开发 -- 反射reflect && 结构体标签的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解 go reflect - 反射基本原理

    反射 是这样一种机制,它是可以让我们在程序运行时(runtime)访问、检测和修改对象本身状态或行为的一种能力。 比如,从一个变量推断出其类型信息、以及存储的数据的一些信息,又或者获取一个对象有什么方法可以调用等。 反射经常用在一些需要同时处理不同类型变量

    2024年01月19日
    浏览(41)
  • 深入理解 go reflect - 反射常见错误

    go 的反射是很脆弱的,保证反射代码正确运行的前提是,在调用反射对象的方法之前, 先问一下自己正在调用的方法是不是适合于所有用于创建反射对象的原始类型。 go 反射的错误大多数都来自于调用了一个不适合当前类型的方法 (比如在一个整型反射对象上调用 Field() 方

    2024年01月19日
    浏览(39)
  • golang第七卷---go中的数据结构

    分享一个go语言高级编程学习网站:Go语言高级编程 数组是一个由固定长度的特定类型元素组成的序列,一个数组可以由零个或多个元素组成。 因为数组的长度是固定的,所以在Go语言中很少直接使用数组。 Go语言数组的声明: 数组是定长的,不可更改,在编译阶段就决定了

    2024年02月03日
    浏览(54)
  • 【GoLang入门教程】Go语言工程结构详述

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站:人工智能 前言 当创建一个Go语言项目时,良好的工程结构是确保项目可维护性、可扩展性和清晰性的关键。 虽然Go本身没有强制性的项目结构要求,但是采用一致性

    2024年01月24日
    浏览(75)
  • 深入理解 go reflect - 反射为什么慢

    我们选择 go 语言的一个重要原因是,它有非常高的性能。但是它反射的性能却一直为人所诟病,本篇文章就来看看 go 反射的性能问题。 在开始之前,有必要先了解一下 go 的性能测试。在 go 里面进行性能测试很简单,只需要在测试函数前面加上 Benchmark 前缀, 然后在函数体

    2024年02月01日
    浏览(46)
  • go 笔记 十二章 断言 assertion 和 反射 reflect

    断言 把一个接口类型指定为它的原始类型 反射 官方说法:在编译时不知道类型的情况下,可更新变量、运行时查看值、调用方法以及直接对他们的布局进行操作的机制,称为反射。 通俗说法:可以知道变量原始数据类型和内容、方法等,并且可以进行一定的操作 为什么要

    2024年02月17日
    浏览(45)
  • 【Golang】go编程语言适合哪些项目开发?

    前言 在当今数字化时代,软件开发已成为各行各业的核心需求之一。 而选择适合的编程语言对于项目的成功开发至关重要。 本文将重点探讨Go编程语言适合哪些项目开发,以帮助读者在选择合适的编程语言时做出明智的决策。 Go 编程语言适合哪些项目开发? Go是由Google开发

    2024年02月04日
    浏览(76)
  • 【Golang】VsCode下开发Go语言的环境配置(超详细图文详解)

    📓推荐网站(不断完善中):个人博客 📌个人主页:个人主页 👉相关专栏:CSDN专栏、个人专栏 🏝立志赚钱,干活想躺,瞎分享的摸鱼工程师一枚 ​ 话说在前,Go语言的编码方式是 UTF-8 ,理论上你直接使用文本进行编辑也是可以的,当然为了提升我们的开发效率我们还是需

    2024年02月07日
    浏览(82)
  • 一个golang小白使用vscode搭建Ununtu20.04下的go开发环境

    先交代一下背景,距离正式接触golang这门语言已经有5年时间,平时偶尔也会用go写写工具和功能,但其实充其量就是语言小白,基本上就是按照教程配置好环境,按照需求写写逻辑,能跑起来就行了。golang随着这几年的变化,这门语言的变化还是非常大的,之前写过一篇《

    2024年01月22日
    浏览(73)
  • Golang 关于反射机制(一文了解)

    前言: Golang 反射比 C++ RTTI 要强大的多,但是比 .NET C#/VB/C++ 来说,它大约属于低阶反射支持的范畴。 但是 Golang 语言提供了相对强大的反射。 它总要比没有提供易用反射支持的要好的多,C++ 之中我们基本只能依赖模板、宏通过元编程来实现相对强大的反射机制。 Golang 反射

    2024年01月23日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包