书生·浦语大模型--第二节课笔记

这篇具有很好参考价值的文章主要介绍了书生·浦语大模型--第二节课笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

书生·浦语大模型--第二节课笔记,InternLM大模型,笔记,语言模型,开发语言,python

大模型及InternLM基本介绍

大模型

  • 定义:参数量巨大、拥有庞大计算能力和参数规模的模型
  • 特点:大量数据训练、数十亿甚至千亿数据、惊人性能

InternLM系列

  • InternLM:轻量级训练框架
  • Lagent:轻量级、开源的基于大语言模型得到智能体框架,将大语言模型转变为多种智能体
  • 浦语灵笔:视觉语言大模型,出色的图文理解和图文创作能力
  • InternLM-7B:70亿参数,支持8k token

实战部分

demo部署

准备工作

白嫖A100
书生·浦语大模型--第二节课笔记,InternLM大模型,笔记,语言模型,开发语言,python

  • 克隆环境
bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
bash /root/share/install_conda_env_internlm_base.sh internlm-demo  # 执行该脚本文件来安装项目实验环境
  • 激活环境
conda activate internlm-demo
  • 安装依赖
# 升级pip
python -m pip install --upgrade pip

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

  • 复制模型
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

代码准备

  • clone代码
cd /root/code
git clone https://gitee.com/internlm/InternLM.git

保证版本一致

cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

终端运行

/root/code/InternLM 目录下新建一个 cli_demo.py 文件,将以下代码填入其中

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("User  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break
    response, history = model.chat(tokenizer, input_text, history=messages)
    messages.append((input_text, response))
    print(f"robot >>> {response}")

运行代码

python /root/code/InternLM/cli_demo.py

书生·浦语大模型--第二节课笔记,InternLM大模型,笔记,语言模型,开发语言,python

web demo 运行

配置SSH本地端口,即可在网页上使用,效果如图
在本地运行,

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 34683

并在浏览器打开

http://127.0.0.1:6006

在服务器端,运行

bash
conda activate internlm-demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
cd /root/code/InternLM
streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

效果如图
书生·浦语大模型--第二节课笔记,InternLM大模型,笔记,语言模型,开发语言,python

Lagent 智能体工具调用 Demo

准备工作

环境准备

# 升级pip
python -m pip install --upgrade pip

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

安装 Lagent

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

替换/root/code/lagent/examples/react_web_demo.py的代码

import copy
import os

import streamlit as st
from streamlit.logger import get_logger

from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.agents.react import ReAct
from lagent.llms import GPTAPI
from lagent.llms.huggingface import HFTransformerCasualLM


class SessionState:

    def init_state(self):
        """Initialize session state variables."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []

        #action_list = [PythonInterpreter(), GoogleSearch()]
        action_list = [PythonInterpreter()]
        st.session_state['plugin_map'] = {
            action.name: action
            for action in action_list
        }
        st.session_state['model_map'] = {}
        st.session_state['model_selected'] = None
        st.session_state['plugin_actions'] = set()

    def clear_state(self):
        """Clear the existing session state."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._session_history = []


class StreamlitUI:

    def __init__(self, session_state: SessionState):
        self.init_streamlit()
        self.session_state = session_state

    def init_streamlit(self):
        """Initialize Streamlit's UI settings."""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
        st.sidebar.title('模型控制')

    def setup_sidebar(self):
        """Setup the sidebar for model and plugin selection."""
        model_name = st.sidebar.selectbox(
            '模型选择:', options=['gpt-3.5-turbo','internlm'])
        if model_name != st.session_state['model_selected']:
            model = self.init_model(model_name)
            self.session_state.clear_state()
            st.session_state['model_selected'] = model_name
            if 'chatbot' in st.session_state:
                del st.session_state['chatbot']
        else:
            model = st.session_state['model_map'][model_name]

        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[list(st.session_state['plugin_map'].keys())[0]],
        )

        plugin_action = [
            st.session_state['plugin_map'][name] for name in plugin_name
        ]
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._action_executor = ActionExecutor(
                actions=plugin_action)
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()
        uploaded_file = st.sidebar.file_uploader(
            '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])
        return model_name, model, plugin_action, uploaded_file

    def init_model(self, option):
        """Initialize the model based on the selected option."""
        if option not in st.session_state['model_map']:
            if option.startswith('gpt'):
                st.session_state['model_map'][option] = GPTAPI(
                    model_type=option)
            else:
                st.session_state['model_map'][option] = HFTransformerCasualLM(
                    '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')
        return st.session_state['model_map'][option]

    def initialize_chatbot(self, model, plugin_action):
        """Initialize the chatbot with the given model and plugin actions."""
        return ReAct(
            llm=model, action_executor=ActionExecutor(actions=plugin_action))

    def render_user(self, prompt: str):
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        with st.chat_message('assistant'):
            for action in agent_return.actions:
                if (action):
                    self.render_action(action)
            st.markdown(agent_return.response)

    def render_action(self, action):
        with st.expander(action.type, expanded=True):
            st.markdown(
                "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插    件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501
                + action.type + '</span></p>',
                unsafe_allow_html=True)
            st.markdown(
                "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501
                + action.thought + '</span></p>',
                unsafe_allow_html=True)
            if (isinstance(action.args, dict) and 'text' in action.args):
                st.markdown(
                    "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501
                    unsafe_allow_html=True)
                st.markdown(action.args['text'])
            self.render_action_results(action)

    def render_action_results(self, action):
        """Render the results of action, including text, images, videos, and
        audios."""
        if (isinstance(action.result, dict)):
            st.markdown(
                "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501
                unsafe_allow_html=True)
            if 'text' in action.result:
                st.markdown(
                    "<p style='text-align: left;'>" + action.result['text'] +
                    '</p>',
                    unsafe_allow_html=True)
            if 'image' in action.result:
                image_path = action.result['image']
                image_data = open(image_path, 'rb').read()
                st.image(image_data, caption='Generated Image')
            if 'video' in action.result:
                video_data = action.result['video']
                video_data = open(video_data, 'rb').read()
                st.video(video_data)
            if 'audio' in action.result:
                audio_data = action.result['audio']
                audio_data = open(audio_data, 'rb').read()
                st.audio(audio_data)


def main():
    logger = get_logger(__name__)
    # Initialize Streamlit UI and setup sidebar
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)

    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
    model_name, model, plugin_action, uploaded_file = st.session_state[
        'ui'].setup_sidebar()

    # Initialize chatbot if it is not already initialized
    # or if the model has changed
    if 'chatbot' not in st.session_state or model != st.session_state[
            'chatbot']._llm:
        st.session_state['chatbot'] = st.session_state[
            'ui'].initialize_chatbot(model, plugin_action)

    for prompt, agent_return in zip(st.session_state['user'],
                                    st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)
    # User input form at the bottom (this part will be at the bottom)
    # with st.form(key='my_form', clear_on_submit=True):

    if user_input := st.chat_input(''):
        st.session_state['ui'].render_user(user_input)
        st.session_state['user'].append(user_input)
        # Add file uploader to sidebar
        if uploaded_file:
            file_bytes = uploaded_file.read()
            file_type = uploaded_file.type
            if 'image' in file_type:
                st.image(file_bytes, caption='Uploaded Image')
            elif 'video' in file_type:
                st.video(file_bytes, caption='Uploaded Video')
            elif 'audio' in file_type:
                st.audio(file_bytes, caption='Uploaded Audio')
            # Save the file to a temporary location and get the path
            file_path = os.path.join(root_dir, uploaded_file.name)
            with open(file_path, 'wb') as tmpfile:
                tmpfile.write(file_bytes)
            st.write(f'File saved at: {file_path}')
            user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(
                file_path=file_path, user_input=user_input)
        agent_return = st.session_state['chatbot'].chat(user_input)
        st.session_state['assistant'].append(copy.deepcopy(agent_return))
        logger.info(agent_return.inner_steps)
        st.session_state['ui'].render_assistant(agent_return)


if __name__ == '__main__':
    root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    root_dir = os.path.join(root_dir, 'tmp_dir')
    os.makedirs(root_dir, exist_ok=True)
    main()

Demo 运行

服务器端输入

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

本地同样采用ssh端口访问
服务器端输入
streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

浦语·灵笔图文理解创作 Demo

环境准备

需要重新开一个服务器A100(1/4)*2
激活虚拟环境文章来源地址https://www.toymoban.com/news/detail-813348.html

/root/share/install_conda_env_internlm_base.sh xcomposer-demo
conda activate xcomposer-demo
pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate

下载模型

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory

下载代码

cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致

运行

cd /root/code/InternLM-XComposer
python examples/web_demo.py  \
    --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
    --num_gpus 1 \
    --port 6006

到了这里,关于书生·浦语大模型--第二节课笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 书生·浦语大模型开源体系(二)笔记

    💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互

    2024年04月09日
    浏览(89)
  • 书生·浦语大模型开源体系(四)笔记

    💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互

    2024年04月28日
    浏览(31)
  • 书生·浦语大模型实战营-学习笔记4

    常见的两种微调策略:增量预训练、指令跟随 指令跟随微调 数据是一问一答的形式 对话模板构建 每个开源模型使用的对话模板都不相同 指令微调原理: 由于只有答案部分是我们期望模型来进行回答的内容,所以我们只对答案部分进行损失的计算 增量预训练微调 数据都是

    2024年01月22日
    浏览(45)
  • 书生·浦语大模型实战营-第四课笔记

    期待已久的微调课 增量预训练和指令跟随是两种微调模式,即两种微调策略。   1)增量预训练 投喂新的领域知识即可,例如书籍、文章、代码 2)指令跟随 采用高质量对话和问答数据进行训练 两者是微调的方法,即算法。 xtuner是一种微调框架。

    2024年02月21日
    浏览(49)
  • 【书生·浦语大模型实战】“PDF阅读小助手”学习笔记

    《新版本Lmdeploy量化手册与评测》 项目主页:【tcexeexe / pdf阅读小助手】 在InternStudio平台中选择 A100 (1/4) 的配置,镜像选择 Cuda11.7-conda ,可以选择已有的开发机 langchain ; Note: /home/tcexeexe/data/model/sentence-transformer :此路径来自于make_knowledge_repository.py 以上脚本会生成数据库文

    2024年01月24日
    浏览(44)
  • 书生·浦语大模型全链路开源体系【大模型第2课-笔记】

    1.1 什么是大模型?   大模型通常指的是机器学习或人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型。这些模型利用大量数据进行训练,并且拥有数十亿甚至数千亿个参数。大模型的出现和发展得益于增长的数据量、计算能力的提升以及算法优化等因素

    2024年01月19日
    浏览(94)
  • 书生·浦语大模型实战营第四次课堂笔记

    哈哈到这才想起来写笔记 倒回去看发现要求将不要葱姜蒜换成自己的名字和昵称! 好好好我就是不配玩(换成管理员也不行!) 诶怎么能进这个环境?要进双系统ubuntu? 现在看视频发现原来是我进入成功了,可以接着往下做omygod!!!! 但是 还是看看视频吧 微调是在海量

    2024年01月20日
    浏览(50)
  • 【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍

    🎉 AI学习星球推荐: GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于 前沿论文解读、资料共享、行业最新动态以、实践教程、求

    2024年04月23日
    浏览(41)
  • 【书生·浦语大模型实战营05】《(5)LMDeploy 大模型量化部署实践》学习笔记

    课程文档:《LMDeploy 的量化和部署》 定义 将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果 为了满足性能和效率的需求,常常需要对模型进行优化,例如模型压缩和硬件加速 产品形态 云端、边缘计算端、移动端 内存开销巨大 庞大的参数

    2024年01月22日
    浏览(50)
  • 《书生·浦语大模型全链路开源开放体系》笔记第五课 LMDeploy 的量化和部署

    首先我们可以使用  vgpu-smi  查看显卡资源使用情况。 可以点击终端(TERMINAL)窗口右侧的「+」号创建新的终端窗口。大家可以新开一个窗口,执行下面的命令实时观察 GPU 资源的使用情况。 结果如下图所示,该窗口会实时检测 GPU 卡的使用情况。 接下来我们切换到刚刚的终

    2024年01月21日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包