Opncv模板匹配 单模板匹配 多模板匹配

这篇具有很好参考价值的文章主要介绍了Opncv模板匹配 单模板匹配 多模板匹配。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

问题引入

单模板匹配

①模板匹配函数:

②查找最值和极值的坐标和值:

整体流程原理介绍

实例代码介绍:

多模板匹配

①定义阈值

②zip函数

整体流程原理介绍

实例代码:


问题引入

下面有请我们的陶大郎登场

这张图片是我们的陶大郎,我们接下来将利用陶大郎来介绍我们的模板匹配

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

我们想要在原图中标记出陶大郎的耳朵,但是又不想手工标记,想要自动标记,这该怎么办呢?

这时候就要利用我们的新知识 模板匹配

模板匹配:能够利用我们现有的图片模板,在原图上自动找到我们想要标记的位置

单模板匹配

首先 我们先截取陶大郎的耳朵来作为我们的模板

这个耳朵就是我们的模板图像,从原图上截取下来的

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

我们先介绍我们要使用的函数:

①模板匹配函数:

cv2.matchTemplate(image, templ, method )

  • image 为原始图像。
  • templ 为模板图像。它的尺寸必须小于或等于原始图像,并且与原始图像具有同样的类型。
  • method 为匹配方法。有6种可能的值

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

例子:

method 可填写对应数值,也可以直接写参数值

res = cv2.matchTemplate(img, template, 3)
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF_NORMED)

②查找最值和极值的坐标和值:

minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc( src )

minVal:最小值

maxVal:最大值

minLoc:最小值坐标

maxLoc:最大值坐标


整体流程原理介绍

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python


实例代码介绍:

import cv2
from matplotlib import pyplot as plt
img = cv2.imread("hui.jpg",0)
template = cv2.imread("fihui.jpg",0)
# 获取模板的高和宽
h,  w = template.shape[:2]

# 模板匹配
res = cv2.matchTemplate(img, template, 3)
# 定位
# min_val 最小值
# min_loc 最小值坐标
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)

fondsite = cv2.rectangle(img, top_left, bottom_right, 255, 2)

cv2.imshow("fondsite",fondsite)
cv2.waitKey()
cv2.destroyAllWindows()

这里咱们的top_left = max_loc选用的max_loc是因为我们的模板匹配使用的 序号3的,使用了归一化,那当然是越大越大,表示近似度越高!


我们运行看看效果

我们可以看到陶文辉的耳朵被圈起来了!

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python


多模板匹配

多模板匹配咱们就用陶大郎的眼睛吧!

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

重点代码函数解释:

①定义阈值

# 取匹配程度大于%97的坐标
# 定义的阈值 threshold
threshold = 0.97
# np.where返回的坐标值(x,y)是(h,w)
loc = np.where(res >= threshold)

我们添加了threshold来表示我们的相似度

通过np.where筛选出相似度大于97%的部分放入loc

重点!!!!!:此时loc里面存放的格式是((x1,x2,...),(y1,y2,....)) 这样的格式

②zip函数

for top_left in zip(*loc[::-1]):
    bottom_right = (top_left[0] + w, top_left[1] + h)
    cv2.rectangle(img, top_left, bottom_right, 255, 1)

这里唯一个点就是这个zip(*loc[::-1]) 是干嘛的?

他其实就是把我们的loc的格式从 ((x1,x2,...),(y1,y2,....)) 变成了((x1,y1),(x2,y2),(x3,y3),..)

然后依次把(x1,y1)放入top_left中进行遍历画出我们的框

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

整体流程原理介绍

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

实例代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread("hui.jpg", 0)
template = cv2.imread("eye.jpg", 0)
# 获取模板的高和宽
h,  w = template.shape[:2]

# 模板匹配
res = cv2.matchTemplate(img, template, 3)
# 取匹配程度大于%97的坐标
# 定义的阈值 threshold
threshold = 0.97
# np.where返回的坐标值(x,y)是(h,w)
loc = np.where(res >= threshold)
for top_left in zip(*loc[::-1]):
    bottom_right = (top_left[0] + w, top_left[1] + h)
    cv2.rectangle(img, top_left, bottom_right, 255, 1)
cv2.imshow('img', img)
cv2.waitKey()
cv2.destroyAllWindows()

运行我们会发现有很多个标记框

这是为什么?

Opncv模板匹配 单模板匹配 多模板匹配,opencv,计算机视觉,人工智能,python

其实这个是咱们图片的问题,我的这个图片比较模糊,是当时截图截下来的,有很多噪音点,所以图片质量不太行,导致它觉得陶大郎的眼睛有很多个,但其实只有两个文章来源地址https://www.toymoban.com/news/detail-813380.html

到了这里,关于Opncv模板匹配 单模板匹配 多模板匹配的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Opncv模板匹配 单模板匹配 多模板匹配

    目录 问题引入 单模板匹配 ①模板匹配函数: ②查找最值和极值的坐标和值: 整体流程原理介绍 实例代码介绍: 多模板匹配 ①定义阈值 ②zip函数 整体流程原理介绍 实例代码: 下面有请我们的陶大郎登场 这张图片是我们的 陶大郎 ,我们接下来将利用 陶大郎 来介绍我们的模板匹

    2024年01月22日
    浏览(45)
  • 计算机视觉 - 基于黄金模板比较技术的缺陷检测

            基于黄金模板比对的检测是一种常见的视觉应用。当进行缺陷检查而其他缺陷检测方法是不可行的时候,使用金模板比较。另外当物体的表面或物体的形状非常复杂时,此技术特别有用。          虽然说黄金模板比较的技术的思路很简单,但是真正落地实施确

    2024年02月09日
    浏览(39)
  • 人工智能在计算机视觉中的应用与挑战

    引言 计算机视觉是人工智能领域的一个重要分支,旨在让计算机能够像人一样理解和解释视觉信息,实现图像和视频的自动识别、理解和分析。计算机视觉技术已经在许多领域产生了深远的影响,如人脸识别、自动驾驶、医学影像分析等。本篇博客将深入探讨人工智能在计算

    2024年02月14日
    浏览(56)
  • 【计算机视觉】基于OpenCV计算机视觉的摄像头测距技术设计与实现

    在当今技术日益进步的时代,计算机视觉已成为我们生活中不可或缺的一部分。从智能监控到虚拟现实,计算机视觉技术的应用范围日益广泛。在这篇博客中,我们将探索一个特别实用的计算机视觉案例:使用OpenCV实现摄像头测距。这一技术不仅对专业人士有用,也为编程爱

    2024年02月04日
    浏览(45)
  • 读十堂极简人工智能课笔记04_计算机视觉

    3.2.3.1. 应该发现真正的边缘,而尽量避免错报 3.2.4.1. 应该正确地找出边缘的确切位置 3.2.5.1. 每条实际的边缘应该检测为一条边缘,而不是多条边缘 4.7.5.1. 有数以百万计的几乎任何种类的图像例子 4.7.7.1. 神经网络自己就能完成这一切

    2024年02月19日
    浏览(46)
  • 计算机视觉(OpenCV+TensorFlow)

    本系列文章是OpenCV系列文章的第三篇,仍然跟随上篇内容主要聚焦于图像的一些操作 在通常情况下我们使用大小恒定的图像。但在某些情况下,我们需要使用不同分辨率的同幅图像,例如,在搜索图像中的某些内容比如脸部信息时,并不确定该内容在图像中占据的大小。这种

    2024年02月05日
    浏览(47)
  • 计算机视觉:OpenCV相机标定

    针孔照相机模型是一种经典的相机模型,它将相机视为一个针孔,将场景中的点投影到成像平面上。在这个模型中,相机的 内参和外参 描述了相机的几何形状和相机的姿态。 相机的 内参矩阵 描述了相机的内部几何形状,包括相机的焦距、像素尺寸和像素坐标原点。相机的

    2024年01月19日
    浏览(63)
  • 计算机视觉与人工智能在医美人脸皮肤诊断方面的应用

    近年来,随着计算机技术和人工智能的不断发展,中医领域开始逐渐探索利用这些先进技术来辅助面诊和诊断。在皮肤望诊方面,也出现了一些现代研究,尝试通过图像分析技术和人工智能算法来客观化地获取皮肤相关的色形参数,从而辅助中医面诊。 一些研究将计算机视觉

    2024年02月11日
    浏览(46)
  • 【计算机视觉】---OpenCV实现物体追踪

    OpenCV中的物体追踪算法基于视觉目标跟踪的原理。物体追踪的目标是在连续的图像序列中定位和跟踪特定物体的位置。 在物体追踪中,我们需要对目标对象进行表示。通常使用边界框(bounding box)来表示目标的位置和大小。边界框是一个矩形区域,由左上角的坐标(x,y)和

    2024年02月08日
    浏览(49)
  • 开源计算机视觉库OpenCV详解

    目录 1、概述 2、OpenCV详细介绍 2.1、OpenCV的起源 2.2、OpenCV开发语言 2.3、OpenCV的应用领域 3、OpenCV模块划分 4、OpenCV源码文件结构 4.1、根目录介绍 4.2、常用模块介绍 4.3、CUDA加速模块 5、OpenCV配置以及Visual Studio使用OpenCV 6、关于Lena图片 7、OpenCV和OpenGL的区别 8、OpenCV与YOLO的区别

    2024年02月10日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包