问答机器人prompt

这篇具有很好参考价值的文章主要介绍了问答机器人prompt。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

def build_prompt(prompt_template, **kwargs):
‘’‘将 Prompt 模板赋值’‘’
prompt = prompt_template
for k, v in kwargs.items():
if isinstance(v, str):
val = v
elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):
val = ‘\n’.join(v)
else:
val = str(v)
prompt = prompt.replace(f"{k.upper()}“, val)
return prompt
prompt_template = “””
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。
确保你的回复完全依据下述已知信息。不要编造答案。
如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

已知信息:
INFO

用户问:
QUERY

请用中文回答用户问题。
“”"
import chromadb
from chromadb.config import Settings

class MyVectorDBConnector:
def init(self, collection_name, embedding_fn):
chroma_client = chromadb.Client(Settings(allow_reset=True))

    # 为了演示,实际不需要每次 reset()
    chroma_client.reset()

    # 创建一个 collection
    self.collection = chroma_client.get_or_create_collection(name=collection_name)
    self.embedding_fn = embedding_fn

def add_documents(self, documents):
    '''向 collection 中添加文档与向量'''
    self.collection.add(
        embeddings=self.embedding_fn(documents),  # 每个文档的向量
        documents=documents,  # 文档的原文
        ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
    )

def search(self, query, top_n):
    '''检索向量数据库'''
    results = self.collection.query(
        query_embeddings=self.embedding_fn([query]),
        n_results=top_n
    )
    return results

class RAG_Bot:
def init(self, vector_db, llm_api, n_results=2):
self.vector_db = vector_db
self.llm_api = llm_api
self.n_results = n_results

def chat(self, user_query):
    # 1. 检索
    search_results = self.vector_db.search(user_query, self.n_results)

    # 2. 构建 Prompt
    prompt = build_prompt(
        prompt_template, info=search_results['documents'][0], query=user_query)

    # 3. 调用 LLM
    response = self.llm_api(prompt)
    return response

创建一个RAG机器人

bot = RAG_Bot(
vector_db,
llm_api=get_completion
)

user_query = “llama 2有对话版吗?”

response = bot.chat(user_query)

print(response)文章来源地址https://www.toymoban.com/news/detail-813430.html

到了这里,关于问答机器人prompt的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 飞书ChatGPT机器人 – 打造智能问答助手

    在飞书中创建chatGPT机器人并且对话,在下面操作步骤中,使用到了Git克隆项目,需提前安装好Git,克隆的项目是Go语言项目,所以需提前安装Go语言环境。 Git Go1.20 首次注册飞书,我们可以创建个人账号 进入后 我们创建一个飞书 企业自建项目 然后设置机器人名称和描述,下面

    2024年02月16日
    浏览(103)
  • vue + element UI 制作问答机器人

    2024年02月11日
    浏览(35)
  • 竞赛项目 深度学习的智能中文对话问答机器人

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的中文对话问答机器人 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 整个项目分为 数据清洗 和 建立模型两个部分。 (1)主要定义了seq2seq这样

    2024年02月13日
    浏览(52)
  • 免费的chartGPT 人工智能机器人问答展示

      无意中发现一个特别好用的AI工具,试着问了几个最近一直困扰我的小孩子的幼小衔接的问题,发现比度娘好用。给出的答案更加智能,还可以免费试用。 对于日常的一些问题,回答更具针对性    日常写代码也能轻松搞定  人工智能是一种让计算机系统具备智能的技术和

    2024年02月07日
    浏览(61)
  • 实现一个微信公众号智能问答机器人

            实现一个微信公众号智能问答机器人。(注:该项目开发并不复杂,但是需要的前提条件较多,需要有一定经验的开发人员才能吃透这篇文章) 注册一个微信公众号(如果没有可以用微信官方测试的公众号,进行调试开发)          (1)注册微信公众号,点击下

    2024年02月11日
    浏览(46)
  • GPT2训练自己的对话问答机器人

    这里我搭建了虚拟的3.6环境 基于GPT2的中文闲聊机器人,模型实现基于HuggingFace的transformers ,精读GPT2-Chinese的论文和代码,获益匪浅。 data/train.txt:默认的原始训练集文件,存放闲聊语料;data/train.pkl:对原始训练语料进行tokenize之后的文件,存储一个list对象,list的每条数据表示一个

    2024年02月12日
    浏览(64)
  • 第04课:使用revChatGPT动手制作问答机器人

    revChatGPT是acheong08/ChatGPT 项目提供了一个很好的 ChatGPT 接口。 地址:https://github.com/acheong08/ChatGPT 该项目是采用python开发的,目前项目在github上已经获取了23.4k的star数量。 执行下面的命令进行安装: 支持的Python版本 最低版本 - Python3.9 推荐版本 - Python3.11+ 先设置api-key,执行如下

    2024年02月12日
    浏览(53)
  • 使用LangChain构建问答聊天机器人案例实战(三)

    使用LangChain构建问答聊天机器人案例实战 LangChain开发全流程剖析 接下来,我们再回到“get_prompt()”方法。在这个方法中,有系统提示词(system prompts)和用户提示词(user prompts),这是从相应的文件中读取的,从“system.prompt”文件中读取系统提示词(system_template),从“u

    2024年02月14日
    浏览(48)
  • 使用LangChain构建问答聊天机器人案例实战(一)

    使用LangChain构建问答聊天机器人案例实战 现场演示GPT-4代码生成 本节我们会通过一个综合案例,跟大家讲解LangChain,这个案例产生的代码会直接在浏览器中运行,并且会输出结果,如图14-1所示,用户问:“What was the highest close price of IBM?”(“IBM的最高收盘价是多少?”)

    2024年02月15日
    浏览(68)
  • 用 ChatGPT 采用自有数据集训练问答机器人

    最近 LLM 模型很火,chatGPT 涵盖的知识范围之广,令人叹为观止。然而码农肯定不能满足于现有的知识库,要扩展自有数据才能发挥其更大的实用价值。 一般来说,深度学习模型大多采用 finetune 的方式来增加训练数据,但 LLM 模型太大了,训练成本过高。无论是离线或是在线

    2024年02月04日
    浏览(80)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包