【机器学习】机器学习上机作业聚类算法

这篇具有很好参考价值的文章主要介绍了【机器学习】机器学习上机作业聚类算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、实验内容

自编代码实现C均值聚类和FCM聚类,在“IRIS数据集(鸢尾花数据集)”上进行实验,验证所编代码是否正确,并计算准确率。
Iris鸢尾花数|据集:包含花萼长度、花萼宽度、花瓣长度、花瓣宽度四个属性,用于预测鸢尾花种类,标签0、1、2分别表示山鸢尾、变色鸢尾、维吉尼亚鸢尾。

二、实验设计

若实验内容皆为指定内容,则此部分则可省略;若实验内容包括自主设计模型等内容,则需要在此部分写明设计思路、流程,并画出模型图并使用相应的文字进行描述。

三、实验环境及实验数据集

简单介绍实验环境和涉及的数据集。

数据集:

下载地址:https://archive.ics.uci.edu/ml/datasets/Iris和scklearn自带的Iris数据集
数据集共有150条数据,分为三类,每类50条数据
每一条数据都有四个属性:花萼长度,花萼宽度,花瓣长度,花瓣宽度
标签数据共有三种,分别是Setosa,Versicolour,Virginica,可用1,2,3代替。一般使用前面的四种属性数据来预测样本属于哪种鸢尾花。可以与Python和MATLAB自带函数计算的结果进行对比。

四、实验过程

实验过程包括整个实验流程说明和在编写代码时一些需要注意的事项,可附代码片段进行说明;
注:为了代码片段尽量的美观、统一,建议附代码片段时只附加关键的片段,不要全部粘贴,并尽量使用下面提供的网站进行代码高亮等格式转换后再粘贴。
https://highlightcod文章来源地址https://www.toymoban.com/news/detail-813809.html

到了这里,关于【机器学习】机器学习上机作业聚类算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(87)
  • 毕设 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月22日
    浏览(54)
  • 竞赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:

    2024年04月17日
    浏览(31)
  • 大数据机器学习与深度学习——过拟合、欠拟合及机器学习算法分类

    针对模型的拟合,这里引入两个概念:过拟合,欠拟合。 过拟合:在机器学习任务中,我们通常将数据集分为两部分:训练集和测试集。训练集用于训练模型,而测试集则用于评估模型在未见过数据上的性能。过拟合就是指模型在训练集上表现较好,但在测试集上表现较差的

    2024年02月04日
    浏览(41)
  • 计算机竞赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:

    2024年02月11日
    浏览(50)
  • 机器学习常识 3: 分类、回归、聚类

    摘要 : 本贴描述分类、回归、聚类问题的基本概念. 机器学习常识 2: 数据类型从输入数据的角度来进行讨论, 这里从输出数据, 或者目标的角度来讨论. 分类 是指将一个样本预测为给定类别之一. 也称为该样本打标签. 例 1: 如果我去向那个女生表白, 她会同意吗? (Y/N) 由于可能的

    2024年02月06日
    浏览(38)
  • 机器学习:什么是分类/回归/聚类/降维/决策

    目录 学习模式分为三大类:监督,无监督,强化学习 监督学习基本问题 分类问题 回归问题 无监督学习基本问题 聚类问题 降维问题 强化学习基本问题 决策问题 如何选择合适的算法 我们将涵盖目前「五大」最常见机器学习任务: 回归 分类 聚类 降维 决策 分类是监督学习

    2024年02月12日
    浏览(43)
  • 机器学习实验六:聚类

    机器学习实验一:线性回归 机器学习实验二:决策树模型 机器学习实验三:支持向量机模型 机器学习实验四:贝叶斯分类器 机器学习实验五:集成学习 机器学习实验六:聚类 (1)掌握聚类的基本思想; (2)掌握 K-means 算法,编程实现 K-means; (3)掌握使用 K-Means 算法对

    2024年02月04日
    浏览(34)
  • 机器学习与深度学习——通过knn算法分类鸢尾花数据集iris求出错误率并进行可视化

    什么是knn算法? KNN算法是一种基于实例的机器学习算法,其全称为K-最近邻算法(K-Nearest Neighbors Algorithm)。它是一种简单但非常有效的分类和回归算法。 该算法的基本思想是:对于一个新的输入样本,通过计算它与训练集中所有样本的距离,找到与它距离最近的K个训练集样

    2024年02月03日
    浏览(39)
  • 机器学习——聚类算法一

    机器学习——聚类算法一 在机器学习中,有多种聚类算法可以用于将数据集中的样本 按照相似性进行分组 。本文将介绍一些常见的聚类算法: K-Means聚类 层次聚类 DBSCAN算法 K-means 是一种迭代算法,它将数据集按照距离 划分为 K 个簇 (其中K是用户预先指定的簇的数量),每

    2024年02月10日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包