概念
机器学习中的集成学习(Ensemble Learning)是一种通过组合多个模型来提高整体性能的技术。它的基本思想是将多个学习器(弱学习器)组合成一个更强大的学习器,以提高整体性能和泛化能力。集成学习可以在各种机器学习任务中使用,包括分类、回归和聚类。
核心
-
弱学习器(Weak Learner): 集成学习的基本组成部分,通常是性能略优于随机猜测的简单学习算法.
弱学习器是指在解决特定问题上性能相对较差的学习模型,但仍然略优于随机猜测。弱学习器的训练可能相对简单,通常是一些简单的模型或规则,例如深度较浅的决策树。虽然单个弱学习器的性能可能有限,但它仍然能够提供一些信息或者略微超过随机猜测的水平。 -
强学习器(Strong Learner): 通过组合多个弱学习器而形成的更强大的学习器,其性能通常比单个弱学习器要好。
强学习器是指在解决特定问题上具有很高性能的学习模型。这个模型通常能够在训练数据和新的未见数据上都表现出色,具有较低的训练误差和较高的泛化能力。强学习器的训练可能涉及到复杂的算法和大量的参数调整,以便更好地拟合训练数据和适应问题的复杂性。
集成学习通过组合多个弱学习器,构建出一个强学习器,以提高整体性能。这是基于"弱者联合成强者"的观点。虽然单个弱学习器可能在某些方面表现较差,但通过组合多个弱学习器,可以弥补它们的缺点,提高鲁棒性,减小方差,从而获得更好的泛化能力。文章来源:https://www.toymoban.com/news/detail-813829.html
-
投票法&文章来源地址https://www.toymoban.com/news/detail-813829.html
到了这里,关于机器学习之集成学习概念介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!