C++内存管理机制(侯捷)笔记3

这篇具有很好参考价值的文章主要介绍了C++内存管理机制(侯捷)笔记3。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

C++内存管理机制(侯捷)

本文是学习笔记,仅供个人学习使用。如有侵权,请联系删除。

参考链接

Youtube: 侯捷-C++内存管理机制

Github课程视频、PPT和源代码: https://github.com/ZachL1/Bilibili-plus

第三讲:malloc和free

32 VC6和VC10的malloc比较

VC6 内存分配

SBH:Small Block Heap

下图是call stack,调用栈,从下往上看。

mainCRTStartup函数是CRT(C Run Time,C标准库)提供的入口点函数 ,调用一系列函数,后面才是调用main函数。

_heap_alloc_base函数,它里面当size小于一个阈值_sbh_thrshold时调用__sbh_alloc_block函数,否则调用HeapAlloc函数,后者是操作系统提供的内存分配函数。

C++内存管理机制(侯捷)笔记3,C++,c++

在 VC6(Visual C++ 6.0)的内存分配机制中,SBH(Small Block Heap)是用于管理小块内存的一部分。这是一个专门用于分配和释放相对较小内存块的堆管理机制,通常用于提高小对象的内存分配效率。

在调用栈中,从下往上看,mainCRTStartup 函数是 CRT(C Runtime)提供的入口点函数。CRT 是 C++ 程序运行时环境的一部分,负责初始化和管理程序的运行时状态。

mainCRTStartup 函数会执行一系列的初始化操作,包括初始化全局变量、调用构造函数等。在这个过程中,可能会涉及到内存分配操作,其中就包括 SBH 的管理。

在 VC6 中,SBH 通常使用一些数据结构(例如内存池、free list 等)来管理小块内存。这有助于减少内存碎片,并提高小对象的分配和释放效率。

整个调用栈的过程可能是这样的:

  1. mainCRTStartup 函数初始化 CRT 环境。
  2. 在初始化过程中,可能会涉及到 SBH 的初始化或使用。
  3. 然后执行 main 函数,开始程序的主要逻辑。

总的来说,VC6 的内存分配机制在运行时可能会使用 SBH 等机制来管理小块内存,以提高性能和效率。这些机制通常是底层的、对开发者透明的,但在整个程序运行的过程中发挥着重要的作用。

VC10内存分配

下图中黑色覆盖的函数表示VC10不再使用,对于_heap_alloc_base函数,它里面直接调用HeapAlloc函数,不再对小块内存进行管理,统统交给操作系统来做。对于VC10版本,它的SHB等小块内存的管理都被包装到HeapAlloc里面来了。

C++内存管理机制(侯捷)笔记3,C++,c++

SBH开始 _heap_init__sbh_heap_init函数

_heap_init里面调用HeapCreate来分配一块大小为4096的堆空间,命名为_crtheap,后面CRT的动作都要从这一块内存中来拿。

_heap_init里面调用__sbh_heap_init,里面时HeapAlloc,从_crtheap中拿内存,准备好16个header。

所以 _heap_init的作用就是准备好16个header。

C++内存管理机制(侯捷)笔记3,C++,c++

看一下header的结构

typedef unsigned int BITVEC;
typedef struct tagHeader
{
    BITVEC bitvEntryHi; // 32位
    BITVEC bitbEntryLo;  // 32位
    BITVEC bitvCommit;  // 32位
    void* pHeapData;
    struct tagRegion* pRegion;
}
HEADER, *PHEADER;

C++内存管理机制(侯捷)笔记3,C++,c++

33 VC6内存分配(1)

看一下_ioinit函数,这是跟I/O相关的初始化,里面调用了_malloc_crt进行内存分配,这是CRT进行的第一次内存分配,看下图的右下角,可以看到分配的大小为32 x 8 = 256B,所有的程序一进来都是分配256B。256在十六进制下是0x100,或者写成100H。

C++内存管理机制(侯捷)笔记3,C++,c++

看右侧的define,其实就是调用了_malloc_dbg,这个和malloc稍微有所不同。

_malloc_dbg 是与调试相关的内存分配函数,它是 Microsoft Visual C++ 提供的一种扩展版本,用于在调试模式下进行内存分配,并提供额外的调试信息。与标准的 malloc 函数相比,_malloc_dbg 主要用于在调试期间更容易跟踪内存分配和释放的情况。

以下是一些与 _malloc_dbg 相关的特点:

  1. 调试信息: _malloc_dbg 在分配的内存块中附加了调试信息,包括分配的源代码文件、行号等。这样在调试时,可以更轻松地追踪内存泄漏或其他内存相关的问题。

  2. 调试版本: _malloc_dbg 通常在调试版本的程序中使用,而在发布版本中,可能使用标准的 malloc。这种区分有助于减小发布版本的二进制大小,并提高性能。

  3. 额外的参数: _malloc_dbg 可能接受比标准 malloc 更多的参数,以提供更多的调试信息。例如,可以指定分配的内存块的类型、标志等。

示例用法可能如下所示:

#include <crtdbg.h>

// ...

void* ptr = _malloc_dbg(size, _NORMAL_BLOCK, __FILE__, __LINE__);

在这个例子中,_malloc_dbg 用于分配带有调试信息的内存块。_NORMAL_BLOCK 表示内存块的类型,__FILE____LINE__ 分别表示调用该函数的源文件和行号。这有助于在调试期间追踪内存的分配和释放情况。

_nh_malloc_dbg这里没有要讲的内容,

继续往里看,调用_heap_alloc_dbg,里面右下角计算blockSize的时候,_CrtMemBlockHeader是一个结构体,可以称为debug header,nSize就是上文提到的256B,后面的nNoManLandSize是4。

右侧的图显示了debug模式下申请nsize=256B大小内存,额外附加了一些东西,debug header和NoMansLand,这是为调试器设计的。

blockSize计算完毕之后,开始调用_heap_alloc_base分配内存空间。

是要要的内存nsize部分加上调试所加的部分,这个整体称为block,就是下图右侧所示的整体,由灰色、深绿色、浅绿色共同构成。

C++内存管理机制(侯捷)笔记3,C++,c++

下页还是_heap_alloc_dbg函数的内容,里面多了两根指针,_pFirstBlock_pLastBlock两根指针指向block链表的头尾。

malloc分配的内存块都用链表串起来。

右下角的memset是给特定地方填入特定的值

C++内存管理机制(侯捷)笔记3,C++,c++

34 VC6内存分配(2)

调用_heap_alloc_base分配内存,小于阈值的内存交给sbh服务,大于阈值的内存交给操作系统HeapAlloc来服务。

这里_Sbh_threshold的值是1016,这是因为还没有加cookie(大小为8),两者加起来是1024B。

C++内存管理机制(侯捷)笔记3,C++,c++

继续往下,调用_sbh_alloc_block函数,里面的动作是这样的:

在前面block的大小基础上,上下添加cookie(体现在2*sizeof(int),以及下图右侧上下两块红色的地方0x131),后面涉及到的(BYTE_PER_PARA-1) 是进行向上调整ROUND_UP,调整到16的倍数。

下面对下图的cookie计算给出具体的步骤:

首先是_ioinit首次需要的内存256B(0x100,浅绿色的部分),然后是调试器加的debug header大小为 9 x 4 = 36B(0x24,灰色部分和深绿色部分(4个0xfd)),再加上下两个cookie大小4 x 2 = 8B(0x8),所有的加起来:0x100 + 0x24 + 0x8 = 0x12C,向上调整到16的倍数,变成0x130,所以cookie应该填的值是0x130。那为什么图中显示的是0x131呢?因为调整为16的倍数之后,这个十六进制数的二进制表示后四位全是零,采用最后一位另作他用,如果最后一位是1表示这块内存分配出去,如果最后一位是0表示这块内存还在sbh手上。这里是分配出去的内存,所以最后一位是1,因此cookie 里面填的值是0x131。

C++内存管理机制(侯捷)笔记3,C++,c++

35 VC6内存分配(3)

前面介绍的函数都是确定该分配内存的大小,下面介绍_sbh_alloc_new_region

16个header,每一个header负责1MB的内存。

header有两个指针,一个指向真正的内存,另一个指向管理中心(region),下面橙色框圈出来的就是new region,具体细节如下

typedef struct tagRegion
{
	int indGroupUse; // 一个整数
	char cntRegionSize[64]; // 64个char
    // 下面两者合并,共有32组,每组64bits,用来管理哪些区块在链表中存在与否等细节
	BITVEC bitvGroupHi[32];  // unsigned int
	BITVEC bitvGroupLo[32];
	struct tagGroup grpHeadList[32];  // 32个group
}
REGION, *REGION;

每一个group是64个ListHead

typedef struct tagGroup
{
	int cntEntries; // 记录累计分配出去的区块
	struct tagListHead listHead[64];  // 64个ListHead
}
GROUP, *PGROUP;

ListHead是什么,里面有两根指针,双向链表

typedef struct tagListHead
{
	struct tagEntry* pEntryNext;
	struct tagEntry* pEntryPrev;
}
LISTHEAD, *PLISTHEAD;	

一个region的大小大概有16K左右。为了管理右侧的虚拟地址空间,它的成本是region(管理中心)的大小,16K。

C++内存管理机制(侯捷)笔记3,C++,c++

36 VC6内存分配(4)

如何从1MB内存中切出一块

现在进入到_sbh_alloc_new_group这个函数的分析

将右侧的虚拟内存空间(大小为1MB),分成32块。每一块大小为1MB / 32 = 32KB。

然后这每一块再细分为8个page,每个page大小为32KB / 8 = 4KB,如下图page1, page2, …, page8所示

第一块由group0进行管理。group0里面有64条链表。SBH中用链表把第一块的8个page串起来,挂在group0里面64根链表的最后一根上。

每一个group管理一块。

C++内存管理机制(侯捷)笔记3,C++,c++

_ioinit第一次来要内存的时候,就从group0的page1挖一块给它。后面又有要内存的时候,就一直往后挖,如果page1到page8都被分配出去了,之后还是要内存,就到group1中去处理。

SBH向操作系统要内存的时候,一开始并不是1MB,而是一个块32KB。

看一下page1到page8是怎么被切割出来的

这32KB(8个page)是一次性从操作系统分配过来的。每一个page的偏移值地方设置为0xffffffff也就是-1(下图中黄色的部分),设置为-1的作用是合并的时候做分隔符(栅栏),分隔符(栅栏)之内的合并在一起。

下图中红色的部分,有三个小块,下面两个红色的小块是两个指针,将8个page串起来,上面的一个红色小块是记录可用空间的大小,这里是4080(由4KB = 4096B,4096减去两个黄色的部分(栅栏,分隔符)8B,剩下4088B,但是要下调到16的倍数,变成4080B,剩余的放到保留区),这上下两块4080是cookie,记录自己这一块的大小。

64条链表负责不同大小的区块,分别是16B, 32B, 64B,…, 每次增加16B,一直到最后一根链表,最后一根应该负责64 x 16 = 1024B的区块分配。另外最后一根链表还有一个任务,就是所有大于1024B的区块都由它负责,当切分完之后如果剩下的空间小于1024B,就要挂载到对应区块大小的那根链表上。

这64根链表上面还有一个整数cntEntries,表示分配的累积量,分配出去一个区块就+1,回收回来一个区块就-1.

C++内存管理机制(侯捷)笔记3,C++,c++

37 VC6内存分配(5)

下面分析一下第一个page怎么切分

4080 = 0xff0

上面_ioinit第一次要的内存是256B(0x110),然后加上各种debug header和其他,总共是0x130,所以给出去的内存是0x130,cookie记录的值是0x131。

剩下的大小为0xff0 - 0x130 = 0xec0

下图左侧红色的地址0x007d0ed0是传出去的指针,指向的是客户要的0x130大小(加上各种debug header等)的内存。然后0x130内部还要调整指针,指向实际要的大小0x100大小的位置,就是下图中间的纯绿色(fill 0xcd)的位置。这就是_ioinit获得的空间的位置。

下图右侧的_NORMAL_BLOCK_CRT_BLOCK指的是不同类型的block,_NORMAL_BLOCK是main函数里面具体用的block,它在main函数结束的时候应该全部被归还,否则就是内存泄漏;而_CRT_BLOCK在main函数运行结束之后还会存在,它会由CRT进行释放。

C++内存管理机制(侯捷)笔记3,C++,c++

38 SBH行为分析 分配+释放之连续动作图解(1)

首次需求是由ioinit.c第81行代码发出,申请100H的空间,加上各种debug header,它的区块大小变成130H(十进制是304),应该由64条链表中的第304 / 16 - 1 = 18号链表进行供应(不同链表区块大小是16的倍数)。但是前63条链表都为空,只有最后一条(#63)有空间。下面就是以最后一条链表(#63)来讲解。

SBH面对这样的需求,它在初始化的时候已经有16个header,现在0号header来进行处理。

1.它首先分配1MB的地址空间,这个动作是由VirtualAlloc去拿到的

p = VirtualAlloc(0, 1MB, MEM_RESERVE, ...)

这段代码使用了 VirtualAlloc 函数,该函数是 Windows API 提供的用于虚拟内存操作的函数之一。在这里,VirtualAlloc 用于分配 1MB 的地址空间,并且使用 MEM_RESERVE 标志表示要保留这个地址空间,而不分配物理内存。

让我们解释一下这个调用:

p = VirtualAlloc(0, 1MB, MEM_RESERVE, ...);
  • 0:表示欲分配或保留的内存区域的起始地址。在这里,设置为 0,表示让系统决定分配的地址。
  • 1MB:表示要分配或保留的内存区域的大小,这里是 1MB。
  • MEM_RESERVE:表示要保留而不是分配物理内存。这样做可以预留地址空间,但只有在访问这些地址空间时才会分配物理内存。
  • ...:其他参数,这里没有提供具体的细节。

所以,这个调用的目的是在虚拟地址空间中保留 1MB 的地址区域,但实际上并没有分配物理内存。这样的操作通常用于预留地址空间,以便在需要时再分配实际的物理内存。

2.其次,header0有另外一根指针分配出region,这个动作是由HeapAlloc进行

HeapAlloc(_crtheap, sizeof(REGION));

这个region里面就是上文介绍的,里面有一些bit,还有32个group,每个group有64条链表。

上述动作准备好之后,要从虚拟地址空间中分配32KB(被分成8个page,每个page大小为4KB),8个page由指针串起来,这次内存分配是用VirtualAlloc进行的

VirtualAlloc(addr, 32KB, MEM_COMMIT, ...) // MEM_COMMIT表示真的分配内存

万事俱备,开始在page1上分配刚开始的需求:申请的100h,区块大小130h,十进制大小4080剩下的大小为0xff0 - 0x130 = 0xec0,这部分还在SBH控制之中,130h被分配出去,所以cookie记为131h。

C++内存管理机制(侯捷)笔记3,C++,c++

下面红色方框中是32组64bits,64bits分别对应64根链表的状态,哪一条链表有挂区块,对应的bit就设置为1。32组表示的是32个group

C++内存管理机制(侯捷)笔记3,C++,c++

第二次需求,这个需求是CRT里面谁发出来的需求呢?是上面讲的call stack中的__crtGetEnvironmentStringsA()发出的。

这次需求是且分出240H的大小(包含各种debug header,调整16的边界等之后的大小),这个240h的区块应该由哪条链表提供服务呢?240h = 576d(d表示十进制),576 / 16 -1 = 35, 所以由#35号链表提供服务。然后去检查64bits中35号对应的bit,看看是否挂有区块,这里的情况是#35链表是空的。 然后退而求其次逐渐遍历更大容量的链表,这里只能找到最大的那条链表,这里最后一条是#63(从0开始编号)。

和前面一样,检查#63链表发现它有8个page,page1还有空间可用。从这里切出240h的大小,经过两次切割之后,page1还剩c80h大小,ec0h - 240h = c80h

C++内存管理机制(侯捷)笔记3,C++,c++

第三次分配70h的大小

首先先检查应该是几号链表服务刚刚好?这里是 70h = 112D, 112 / 16 - 1 = 6, 应该由6号链表服务,但是它是空的,往上寻找只发现最后一个链表有区块。

page1继续分配空间,这次分配之后还剩下c80h - 70h = c10h

C++内存管理机制(侯捷)笔记3,C++,c++

39 SBH行为分析 分配+释放之连续动作图解(2)

上面是分析内存分配的情况,下面分析一下内存回收的阶段。

下图是第15次的动作,它前面有14次内存分配,这次是内存释放(回收),右上角可以看到cntEntries由14变成13,内存释放会-1.

这次释放的是大小为240h的区块,这一块应该回收到64根链表中的哪一根呢?240h = 576D, 576 / 16 - 1 = 35,所以应该还到#35号链表。由于分配出去的cookie为241h,现在将其变为240h,就表示回收回来,在SBH的掌控之下。然后64bits中第35号bit需要由0变成1

C++内存管理机制(侯捷)笔记3,C++,c++

40 SBH行为分析 分配+释放之连续动作图解(3)

下图是第16次的动作,还是内存分配的动作

这次分配的是b0h,应该由哪条链表来服务呢?b0h = 176D, 176 / 16 - 1 = 10,所以应该由#10号链表服务,但是它是空的。此时需要向右寻求拥有更大区块的链表的帮助,这里从#10号往右逐个查找,发现上次回收了回来第#35号链表,它是可用的,所以这次应该由#35号链表提供服务。

上次刚回收回来240h,分配出去b0h,这块空间还剩多大?240h - b0h = 190h

这里的190h,应该挂到哪条链表呢? 190h = 400D, 400 / 16 - 1= 24,所以应该挂到#24号链表。此时64bits中的24号bit需要变成1,表示该号链表有区块可分配。

C++内存管理机制(侯捷)笔记3,C++,c++

一直进行下去,不断的进行内存分配和回收。

group1共有32KB,

下面的第一行表示的就是group1的64条链表的使用情况:

02000014 00000000H // 共64bits,表示的是第几号链表时候有区块

展开成二进制,发现有3个链表挂有区块,有可用空间供分配。

现在要分配的大小为230h,上面的group1中的可用链表都不能满足它的需求

现在用的是group2,对于group2中,230h应该由几号链表来服务呢? 230h = 560D, 560 / 16 - 1 = 34,理想的状况是由34号链表服务,它检查下面的表示链表状态的64bits,

这里第二行

00000000 00000001H // 表示只有最后一条链表有可用空间供分配

表示只有最后一条链表有可用空间供分配,最后一条链表的编号为#63, 每个大小page还是4080D = ff0H。

现在ff0H分配出去230H,还剩 ff0h - 230h = dc0h,dc0h应该挂在哪个链表上呢?dc0h = 3520D,表示空间大小为3520B,比前63条链表的区块(小于1024B)还要大,它只能还挂在#63号链表上。

C++内存管理机制(侯捷)笔记3,C++,c++

41 SBH行为分析 分配+释放之连续动作图解(4)

VC6内存管理:区块的合并

如果回收的是相邻的空间,是不是应该合并呢?

这里的上cookie表示的是上面的cookie,下cookie表示的是下面的cookie。

下图左侧第一张图中灰色部分表示待收回的区块300h,它的上下两部分为白色,表示已经回收过来的区块,可以合并。

首先往下看,怎么往下看呢?

指针找到自己的cookie大小,这里是300h,指针移动300h,就到了下面一个区块的cookie位置,看最后1bit是否是为0,如果为0,表示可以和下面的区块合并。

现在发现,下方区块为free,也为300h,合并之,合并为600h,如第二张图中间灰色部分所示。

总之,往下合并,用的就是上cookie,根据上cookie的大小,指针移动cookie个大小,就可以找到下一个区块的位置。

其次往上看,怎么往上看呢?

指针还在自己cookie的位置,往上移动4字节,就找到上方区块的下cookie,判断最后1bit是否为0,若为0,就表示可以和上面的区块合并。

现在发现,上方区块也为free,大小也为300h,合并之。

总之,往上合并,用的是上面区块的下cookie,根据这个值,往上跳cookie个大小,找到上面区块的起始位置。如果没有下cookie,就不能往上合并。

三个300h合并大小为900h,然后去找900h应该挂在几号链表上,900h = 2304D, 2304大于1024,所以它应该挂在最后一个链表#63上,它用来处理大于1024B的区块。

C++内存管理机制(侯捷)笔记3,C++,c++

42 VC6内存管理free(p)(上)

free回收,SBH要确定落在哪个header(共16个header)指定的1MB空间中,然后确定是这个header中的哪个group,然后确定这个group中的64条链表中的哪个链表。

C++内存管理机制(侯捷)笔记3,C++,c++

43 VC6内存管理总结(上)

分成16个header,每个header管理1MB的虚拟空间,这个虚拟空间分成32个group(每个group管理大小为32KB的空间),每个group里有64个链表。

这里的管理是分段管理(一段是32KB),分段的时候便于一段全部回收,然后还给操作系统。

如何判断全回收?

因为每个group中都有一个cntEntries,统计分配和回收的区块数量,当它为0的时候,意味着这个group全回收,这一段32KB就可以还给操作系统。

typedef struct tagGroup
{
	int cntEntries; // 记录累计分配出去的区块
	struct tagListHead listHead[64];  // 64个ListHead
}
GROUP, *PGROUP;

C++内存管理机制(侯捷)笔记3,C++,c++

cntEntries = 0的时候,这些区块是什么样子呢?它们已经进行了合并,合并到初始状态,初始状态是什么呢?就是8个page分别挂载4080B那个状态,如下图所示,然后挂在#63号链表上。

C++内存管理机制(侯捷)笔记3,C++,c++

不急着还给操作系统,有一个defering,延缓归还的操作。

有一个全回收的group时,先暂存,当有第二个全回收的group时,才释放前面那个group。

C++内存管理机制(侯捷)笔记3,C++,c++

44 VC6内存管理总结(下)

释放所有的内存块,SBH系统的面貌就是初始状态,如前面所述。

C++内存管理机制(侯捷)笔记3,C++,c++

第二讲讲的是GNU C++的分配器,这里的第三讲涉及的是VC的malloc函数,可以把它们混在一起吗?其实GNU C++的malloc实现差不多。

这里再系统化一遍。

allocator要内存,底部还是向malloc要内存。

allocator设计成16个链表的目的不是提升分配的速度,而是为了去除malloc的cookie开销,减少malloc的次数,每一次malloc要一大块内存,然后切分成相等的区块,这样就可以去除每一小块的cookie。

C++内存管理机制(侯捷)笔记3,C++,c++

从操作系统的API(这里是windows系统,比如HeapAlloc, VirtualAlloc),到CRT的malloc设计,再到std::allocator的底部实现,都有类似的链表管理结构。

C++内存管理机制(侯捷)笔记3,C++,c++

后记

截至2024年1月12日16点18分,花费1天的时间,完成《C++内存管理机制》第三讲的学习,这里学习完VC6的malloc底层实现逻辑。从C++标准库的allocator分配器到CRT(CRT 指的是 C Runtime Library,是 C 语言运行时库) 的malloc实现,对底层的内存分配结构更清楚。文章来源地址https://www.toymoban.com/news/detail-813846.html

到了这里,关于C++内存管理机制(侯捷)笔记3的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《C++高级编程》读书笔记(七:内存管理)

    1、参考引用 C++高级编程(第4版,C++17标准)马克·葛瑞格尔 2、建议先看《21天学通C++》 这本书入门,笔记链接如下 21天学通C++读书笔记(文章链接汇总) 1. 使用动态内存 1.1 如何描绘内存 在本书中,内存单元表示为一个带有标签的框,该标签表示这个内存对应的变量名,方

    2024年02月08日
    浏览(86)
  • 侯捷 C++ part2 兼谈对象模型笔记——7 reference、const、new/delete

    7.1 reference x 是整数,占4字节; p 是指针占4字节(32位); r 代表 x ,那么 r 也是整数 ,占4字节 引用与指针不同,只能代表一个变量,不能改变 引用底部的实现也是指针,但是注意 object 和它的 reference 的 大小是相同的,地址也是相同的 (是编译器制造的假象) reference 通

    2024年02月12日
    浏览(32)
  • 【Linux内核】内存管理——内存回收机制

    转载请注明: https://www.cnblogs.com/Ethan-Code/p/16626560.html 前文提到malloc的内存分配方式,malloc申请的是虚拟内存,只有在程序去访问时,才会触发缺页异常进入内核态,在缺页中断函数中建立物理内存映射。 如果物理内存充足,则直接建立页框与页的映射。当物理内存不足时,内

    2023年04月09日
    浏览(49)
  • Qt 的内存管理机制

    目录 Qt 的内存管理机制 Qt 的对象树 利用代码查看自动释放 Qt 中所有的控件都是被一颗多叉树管理起来的,这样就是为了方便释放资源的时候方便释放,而我们在编写代码的时候,创建对应的控件,然后将对应的控件添加到 Qt 的对象树中,此时这个对象的释放问题也就不需

    2024年04月17日
    浏览(28)
  • go内存管理机制

    golang内存管理基本是参考tcmalloc来进行的。go内存管理本质上是一个内存池,只不过内部做了很多优化: 自动伸缩内存池大小,合理切割内存块 。 基本概念: Page :页,一块 8 K大小的内存空间。Go向操作系统申请和释放内存都是以页为单位。 span :内存块,一个或多个page组

    2024年02月13日
    浏览(29)
  • 数据结构之动态内存管理机制

      目录 数据结构之动态内存管理机制 占用块和空闲块 系统的内存管理 可利用空间表 分配存储空间的方式 空间分配与回收过程产生的问题 边界标识法管理动态内存 分配算法 回收算法 伙伴系统管理动态内存 可利用空间表中结点构成 分配算法 回收算法 总结 无用单元收集(

    2024年02月12日
    浏览(40)
  • 深入浅出:Python内存管理机制详解

    随机存取存储器(Random Access Memory,RAM) :是计算机中用于临时存储数据的一种硬件组件。它是计算机的主要内存之一,用于存储正在运行的程序和操作系统所需的数据。 主要特点: 临时存储 :RAM 存储的数据是临时的,意味着当计算机关闭或重启时,其中的数据会被清空。

    2024年02月04日
    浏览(43)
  • 侯捷C++(一、面向对象)

    笔记 使用 同类型相加,Fraction类会使用析构函数将4类型转换 给析构函数加上 explicit 表示明确的析构函数,即此函数只进行析构操作(不会被编译器用作他处,如转换) https://www.cnblogs.com/-citywall123/p/12694761.html 指针指针的使用效率不会比一般的指针高,但是它胜在更安全、更

    2024年02月13日
    浏览(42)
  • 吃透进程地址空间,理清OS内存管理机制

    Hello,大家好。本文要给大家带来的是有关Linux中的进程地址空间的讲解 首先我们来看着一张图,相信有学习过 C/C++内存管理 的同学一定可以清楚下面的这张图。知道内存中划分了很多的区域,包括 栈区、堆区、静态区、只读常量区、代码段、共享区等等 。 但是呢却不知道

    2024年02月08日
    浏览(44)
  • [javascript核心-08] V8 内存管理机制及性能优化

    V8 本身也是程序,它本身也会申请内存,它申请的内存称为常驻内存,而它又将内存分为堆和栈 栈内存介绍 栈用于存放JS 中的基本类型和引用类型指针 栈空间是连续的,增加删除只需要移动指针,操作速度很快 栈空间是有限的,若超出栈空间内存,会抛出栈空间溢出错误

    2024年02月16日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包