MATLAB - 四旋翼飞行器动力学方程

这篇具有很好参考价值的文章主要介绍了MATLAB - 四旋翼飞行器动力学方程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章目录

 文章来源地址https://www.toymoban.com/news/detail-813965.html


前言

本例演示了如何使用 Symbolic Math Toolbox™(符号数学工具箱)推导四旋翼飞行器的连续时间非线性模型。具体来说,本例讨论了 getQuadrotorDynamicsAndJacobian 脚本,该脚本可生成四旋翼状态函数及其雅各布函数。这些函数将在使用非线性模型预测控制(模型预测控制工具箱)控制四旋翼飞行器的示例中使用。

四旋翼飞行器又称四旋翼直升机,是一种拥有四个旋翼的直升机。从四旋翼飞行器的质量中心出发,旋翼呈等距离的正方形排列。四旋翼的运动是通过调整四个旋翼的角速度来控制的,而四个旋翼是由电动马达带动旋转的。四旋翼飞行器动力学数学模型可从牛顿-欧拉方程和欧拉-拉格朗日方程中导出 [1]。

 


 

一、定义状态变量和参数

如图所示,四旋翼飞行器有六个自由度(三个线性坐标和三个角度坐标),四个控制输入。

MATLAB - 四旋翼飞行器动力学方程,matlab,机器人,自动驾驶,ROS,人工智能,机器人动力学,四旋翼飞行器

四旋翼飞行器的 12 个状态是

其中

表示线性位置。

分别表示滚转角、俯仰角和偏航角。

表示线速度和角速度,或线性位置和角度位置的时间导数。

四旋翼飞行器的运动参数为

 代表四个旋翼的角速度平方。

 代表机身坐标系中转动惯量矩阵的对角元素。

(k,l,m,b,g)代表升力常数、转子与质量中心的距离、四旋翼质量、阻力常数和重力。

前四个参数  是控制输入或控制四旋翼飞行器轨迹的操纵变量。其余参数固定为给定值。

二、定义变换矩阵和科里奥利矩阵

定义惯性坐标系和主体坐标系之间的变换矩阵。需要这些变换矩阵来描述四旋翼飞行器在两个坐标系中的运动。四旋翼飞行器的 12 个状态在惯性系中定义,旋转惯性矩阵在机身系中定义。

创建符号函数来表示随时间变化的角度。在按照 [1] 进行的数学推导中,需要这种明确的时间依赖性来评估时间导数。定义矩阵 Wη 以将角速度从惯性系转换到体坐标系。定义旋转矩阵 R,使用局部函数部分定义的 rotationMatrixEulerZYX 函数将线性力从机身坐标系转换到惯性坐标系。创建符号矩阵来表示这些变换矩阵。

% Create symbolic functions for time-dependent angles
% phi: roll angle
% theta: pitch angle
% psi: yaw angle
syms phi(t) theta(t) psi(t)

% Transformation matrix for angular velocities from inertial frame
% to body frame
W = [ 1,  0,        -sin(theta);
      0,  cos(phi),  cos(theta)*sin(phi);
      0, -sin(phi),  cos(theta)*cos(phi) ];

% Rotation matrix R_ZYX from body frame to inertial frame
R = rotationMatrixEulerZYX(phi,theta,psi);

 求用于表示惯性系中旋转能量的雅各布矩阵 。

% Create symbolic variables for diagonal elements of inertia matrix
syms Ixx Iyy Izz

% Jacobian that relates body frame to inertial frame velocities
I = [Ixx, 0, 0; 0, Iyy, 0; 0, 0, Izz];
J = W.'*I*W;

接下来,找出科里奥利矩阵 ,它包含角欧拉-拉格朗日方程中的陀螺项和向心项。使用符号 diff 和 jacobian 函数进行微分运算。为了简化微分后科里奥利矩阵的符号,可以用 中的显式时间相关项替换为符号变量(代表特定时间的某些值)。这种简化的符号使这里的结果更容易与 [1] 中的推导进行比较。 

% Coriolis matrix
dJ_dt = diff(J);
h_dot_J = [diff(phi,t), diff(theta,t), diff(psi,t)]*J;
grad_temp_h = transpose(jacobian(h_dot_J,[phi theta psi]));
C = dJ_dt - 1/2*grad_temp_h;
C = subsStateVars(C,t);

三、证明科里奥利矩阵定义是一致的

科里奥利矩阵 很容易用上一节的符号工作流程推导出来。然而,这里的 定义与 [1] 中的不同,后者使用克里斯托弗符号推导科里奥利矩阵。由于  并非唯一,因此可以有多种定义方法。但是,欧拉-拉格朗日方程中使用的 项必须是唯一的。本节将证明 的符号定义与 [1] 中的定义是一致的,即 项在两个定义中在数学上是相等的。

利用上一节中得出的 的符号定义来评估  项。

% Evaluate C times etadot using symbolic definition
phidot   = subsStateVars(diff(phi,t),t);
thetadot = subsStateVars(diff(theta,t),t);
psidot   = subsStateVars(diff(psi,t),t);
Csym_etadot = C*[phidot; thetadot; psidot];

使用 [1] 中得出的 的定义,对 项进行评估。

% Evaluate C times etadot using reference paper definition
C11 = 0;
C12 = (Iyy - Izz)*(thetadot*cos(phi)*sin(phi) + psidot*sin(phi)^2*cos(theta)) ...
      + (Izz - Iyy)*(psidot*cos(phi)^2*cos(theta)) - Ixx*psidot*cos(theta);
C13 = (Izz - Iyy)*psidot*cos(phi)*sin(phi)*cos(theta)^2;
C21 = (Izz - Iyy)*(thetadot*cos(phi)*sin(phi) + psidot*sin(phi)^2*cos(theta)) ...
      + (Iyy - Izz)*psidot*cos(phi)^2*cos(theta) + Ixx*psidot*cos(theta);
C22 = (Izz - Iyy)*phidot*cos(phi)*sin(phi);
C23 = - Ixx*psidot*sin(theta)*cos(theta) + Iyy*psidot*sin(phi)^2*sin(theta)*cos(theta) ...
      + Izz*psidot*cos(phi)^2*sin(theta)*cos(theta);
C31 = (Iyy - Izz)*psidot*cos(theta)^2*sin(phi)*cos(phi) - Ixx*thetadot*cos(theta);
C32 = (Izz - Iyy)*(thetadot*cos(phi)*sin(phi)*sin(theta) + phidot*sin(phi)^2*cos(theta)) ...
      + (Iyy - Izz)*phidot*cos(phi)^2*cos(theta) + Ixx*psidot*sin(theta)*cos(theta) ...
      - Iyy*psidot*sin(phi)^2*sin(theta)*cos(theta) - Izz*psidot*cos(phi)^2*sin(theta)*cos(theta);
C33 = (Iyy - Izz)*phidot*cos(phi)*sin(phi)*cos(theta)^2 ...
      - Iyy*thetadot*sin(phi)^2*cos(theta)*sin(theta) ...
      - Izz*thetadot*cos(phi)^2*cos(theta)*sin(theta) + Ixx*thetadot*cos(theta)*sin(theta);
Cpaper = [C11, C12, C13; C21, C22, C23; C31 C32 C33];
Cpaper_etadot = Cpaper*[phidot; thetadot; psidot];
Cpaper_etadot = subsStateVars(Cpaper_etadot,t);

证明这两个定义对 项给出了相同的结果。

tf_Cdefinition = isAlways(Cpaper_etadot == Csym_etadot)
tf_Cdefinition = 3x1 logical array

   1
   1
   1

四、查找运动方程

求出 12 个状态的运动方程。

根据 [1],求出扭矩 τ B 在滚转、俯仰和偏航角方向上的扭矩:

  • 通过降低第 2 个转子的速度和提高第 4 个转子的速度来设定滚转运动。
  • 通过降低第 1 个转子的速度和提高第 3 个转子的速度来设置俯仰运动。
  • 偏航运动是通过增大两个相对旋翼的速度和减小另外两个旋翼的速度来实现的。

求转子 T 在机身 Z 轴方向上的总推力。

% Define fixed parameters and control input
% k: lift constant
% l: distance between rotor and center of mass
% m: quadrotor mass
% b: drag constant
% g: gravity
% ui: squared angular velocity of rotor i as control input
syms k l m b g u1 u2 u3 u4

% Torques in the direction of phi, theta, psi
tau_beta = [l*k*(-u2+u4); l*k*(-u1+u3); b*(-u1+u2-u3+u4)];

% Total thrust
T = k*(u1+u2+u3+u4);

接下来,创建符号函数来表示随时间变化的位置。为线性位置、角度及其时间导数定义 12 个状态 。定义好状态后,用显式时间项代替,以简化符号。

% Create symbolic functions for time-dependent positions
syms x(t) y(t) z(t)

% Create state variables consisting of positions, angles,
% and their derivatives
state = [x; y; z; phi; theta; psi; diff(x,t); diff(y,t); ...
    diff(z,t); diff(phi,t); diff(theta,t); diff(psi,t)];
state = subsStateVars(state,t);

建立描述 12 个状态  的时间导数的 12 个运动方程。线性加速度的微分方程为 m.,角加速度的微分方程为 。代入明确的时间相关项,以简化符号。

f = [ % Set time-derivative of the positions and angles
      state(7:12);

      % Equations for linear accelerations of the center of mass
      -g*[0;0;1] + R*[0;0;T]/m;

      % Euler–Lagrange equations for angular dynamics
      inv(J)*(tau_beta - C*state(10:12))
];

f = subsStateVars(f,t);

在前面的步骤中,固定参数被定义为符号变量,以紧跟文献 [1] 的推导。接下来,用给定值替换固定参数。这些值用于设计四旋翼飞行器特定配置的轨迹跟踪控制器。替换固定参数后,使用简化对运动方程进行代数简化。

% Replace fixed parameters with given values here
IxxVal = 1.2;
IyyVal = 1.2;
IzzVal = 2.3;
kVal = 1;
lVal = 0.25;
mVal = 2;
bVal = 0.2;
gVal = 9.81;

f = subs(f, [Ixx Iyy Izz k l m b g], ...
    [IxxVal IyyVal IzzVal kVal lVal mVal bVal gVal]);
f = simplify(f);

五、为非线性模型预测控制查找雅各布因子并生成文件

最后,使用符号数学工具箱查找非线性模型函数的解析雅各布因子并生成 MATLAB® 文件。这一步骤对于提高使用模型预测控制工具箱™ 解决轨迹跟踪非线性模型时的计算效率非常重要。更多信息,请参阅 nlmpc(模型预测控制工具箱)和 Specify Prediction Model for Nonlinear MPC(模型预测控制工具箱)。

查找状态函数相对于状态变量和控制输入的雅各布。

% Calculate Jacobians for nonlinear prediction model
A = jacobian(f,state);
control = [u1; u2; u3; u4];
B = jacobian(f,control);

生成状态函数和状态函数 Jacobians 的 MATLAB 文件。这些文件可用于设计轨迹跟踪控制器,详见《使用非线性模型预测控制(模型预测控制工具箱)控制四旋翼飞行器》。

% Create QuadrotorStateFcn.m with current state and control
% vectors as inputs and the state time-derivative as outputs
matlabFunction(f,'File','QuadrotorStateFcn', ...
    'Vars',{state,control});

% Create QuadrotorStateJacobianFcn.m with current state and control
% vectors as inputs and the Jacobians of the state time-derivative
% as outputs
matlabFunction(A,B,'File','QuadrotorStateJacobianFcn', ...
    'Vars',{state,control});

您可以在 getQuadrotorDynamicsAndJacobian.m 文件中访问该脚本中的代码。

六、函数

function [Rz,Ry,Rx] = rotationMatrixEulerZYX(phi,theta,psi)
% Euler ZYX angles convention
    Rx = [ 1,           0,          0;
           0,           cos(phi),  -sin(phi);
           0,           sin(phi),   cos(phi) ];
    Ry = [ cos(theta),  0,          sin(theta);
           0,           1,          0;
          -sin(theta),  0,          cos(theta) ];
    Rz = [cos(psi),    -sin(psi),   0;
          sin(psi),     cos(psi),   0;
          0,            0,          1 ];
    if nargout == 3
        % Return rotation matrix per axes
        return;
    end
    % Return rotation matrix from body frame to inertial frame
    Rz = Rz*Ry*Rx;
end

function stateExpr = subsStateVars(timeExpr,var)
    if nargin == 1 
        var = sym("t");
    end
    repDiff = @(ex) subsStateVarsDiff(ex,var);
    stateExpr = mapSymType(timeExpr,"diff",repDiff);
    repFun = @(ex) subsStateVarsFun(ex,var);
    stateExpr = mapSymType(stateExpr,"symfunOf",var,repFun);
    stateExpr = formula(stateExpr);
end

function newVar = subsStateVarsFun(funExpr,var)
    name = symFunType(funExpr);
    name = replace(name,"_Var","");
    stateVar = "_" + char(var);
    newVar = sym(name + stateVar);
end

function newVar = subsStateVarsDiff(diffExpr,var)
    if nargin == 1 
      var = sym("t");
    end
    c = children(diffExpr);
    if ~isSymType(c{1},"symfunOf",var)
      % not f(t)
      newVar = diffExpr;
      return;
    end
    if ~any([c{2:end}] == var)
      % not derivative wrt t only
      newVar = diffExpr;
      return;
    end
    name = symFunType(c{1});
    name = replace(name,"_Var","");
    extension = "_" + join(repelem("d",numel(c)-1),"") + "ot";
    stateVar = "_" + char(var);
    newVar = sym(name + extension + stateVar);
end

七、参考资料

[1] Raffo, Guilherme V., Manuel G. Ortega, and Francisco R. Rubio. "An integral predictive/nonlinear ℋ∞ control structure for a quadrotor helicopter". Automatica 46, no. 1 (January 2010): 29–39. https://doi.org/10.1016/j.automatica.2009.10.018.

[2] Tzorakoleftherakis, Emmanouil, and Todd D. Murphey. "Iterative sequential action control for stable, model-based control of nonlinear systems." IEEE Transactions on Automatic Control 64, no. 8 (August 2019): 3170–83. https://doi.org/10.1109/TAC.2018.2885477.

[3] Luukkonen, Teppo. "Modelling and control of quadcopter". Independent research project in applied mathematics, Aalto University, 2011.

 

到了这里,关于MATLAB - 四旋翼飞行器动力学方程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 旋翼无人机建模动力学公式整理

    C_T为升力系数,C_M为扭力系数,w为螺旋桨的转速 如果是‘十’字型的飞机 x,y,z轴的力矩为: d是机体中心到每个螺旋桨的距离,b是一个系数; f=Ct*W^2,Ct——升力系数,W——螺旋桨的转速 惯量矩阵为: 四个电机产生的力f1,f2,f3,f4,如果我们假设z轴向上为正,可以得到:

    2024年04月29日
    浏览(44)
  • 无人机|四旋翼运动动力学建模及位置控制仿真

    本文将实现对无人机动力学以及运动学的公式推导完成建模,该模型以电机转速为输入,以无人机的状态量为输出。并在此基础上实现位置控制,以期望位置作为输入,使用串级pid结合无人机模型生成控制指令并对无人机进行控制。 对于任意刚体运动,均可分解为转动和平动

    2024年04月11日
    浏览(36)
  • 飞行动力学-第15节-part2-松杆中性点 之 基础点摘要

    stick fixed: N 0 N_0 N 0 ​ ,握杆,升降舵固定 stick free: N 0 ′ N\\\'_0 N 0 ′ ​ ,松杆,升降舵自由(在气动力作用下偏转直至铰链力矩为零) 松杆静稳定性是低于握杆静稳定性的。 ( d C m d C L ) f r e e d C m d C L ) f i x e d (frac {dC_m} {dC_L})_{free} frac {dC_m} {dC_L})_{fixed} ( d C L ​ d C m ​

    2024年02月15日
    浏览(54)
  • 飞行动力学 - 第15节-part 1-操纵力与铰链力矩 之 基础点摘要

    Hands On Throttle And Stick 操纵杆力:驾驶员施加在驾驶杆或柱上用于偏转操纵面的力矩 铰链力矩:作用在升降舵上的气动力关于铰链轴的力矩 力矩太小导致操作高度敏感 力矩太大导致操作过于迟钝 轴式补偿(set back):铰链轴位置影响力臂 角式补偿(horn balancing):压心位置影

    2024年02月15日
    浏览(29)
  • 飞行动力学 - 第11节-纵向静稳定性及各部件贡献 之 基础点摘要

    迎角:速度方向与机身在对称面投影的夹角 侧滑角:速度方向与机身对称面的夹角 aileron: δ a delta_a δ a ​ rudder: δ r delta_r δ r ​ elevator: δ e delta_e δ e ​ flap: δ f delta_f δ f ​ spoiler: δ s delta_s δ s ​ 注:这里给出的主要是固定翼的操纵面角度。 纵向稳定性:轴向线

    2024年02月16日
    浏览(86)
  • 飞行动力学 - 第17节-part3-垂尾和推进系统对航向的影响 之 基础点摘要

    平尾对航向静稳定性的影响机理与机翼相同,由于尺寸小,通常可忽略 垂尾是航向静稳定性的最大来源 其贡献取决于 l v l_v l v ​ , S v S_v S v ​ , AR, ∧ v wedge_v ∧ v ​ , 后机身几何形状及垂尾出的侧洗角 δ delta δ 亚音速、方向舵中立位置下,垂尾所产生的侧力: 垂尾产生的

    2024年02月09日
    浏览(58)
  • 飞行动力学 - 第4节-part1-螺旋桨式飞机的最大最小速度 之 基础点摘要

    最小功率:类似抛物线底部斜率为零的位置 最大速度:所需功率与输出功率交点位置 最小速度:所需功率与输出功率交点位置 根据前面功率与速度曲线进行求导,当斜率为零时即功率最小。 课程中通过手工推导过程,讲述了最小功率的解析解求解方式。 关于所需功率和输

    2024年02月12日
    浏览(75)
  • 飞行动力学 - 第5节-part1-爬升性能、螺旋桨式飞机的爬升性能 之 基础点摘要

    爬升率:爬升时的垂直速度 爬升角:爬升时与水平的夹角 其中爬升率定义: R / C = Δ P W = P A − P R W R/C = frac {varDelta P} {W} = frac {P_A - P_R} {W} R / C = W Δ P ​ = W P A ​ − P R ​ ​ 螺旋桨飞机 P A P_A P A ​ 在给定高度为常量 飞机重量W为常量 当 P R P_R P R ​ 未最小值时,爬升率为

    2024年02月12日
    浏览(36)
  • 基于Matlab构建适用于无人机或四轴飞行器的IMU+GPS融合算法(附源码)

    此示例演示如何构建适用于无人机 (UAV) 或四轴飞行器的 IMU + GPS 融合算法。此示例使用加速度计、陀螺仪、磁力计和 GPS 来确定无人机的方向和位置。 设置采样率。在典型系统中,加速度计和陀螺仪以相对较高的采样率运行。在融合算法中处理来自这些传感器的数据的复杂

    2024年02月03日
    浏览(55)
  • 二维离散动力学系统的混沌研究【基于matlab的动力学模型学习笔记_9】

    摘 要: 混沌(Chaos)是指发生在确定系统中的貌似随机的不规则运动,本文将基于经典的二维系统,然后根据动力学方程研究其混沌产生过程以及相对应的MATLAB仿真,再讨论Lyapunov指数以及正平衡点。 上一篇中介绍了一维系统,这次我们将维数提升到二。 /*仅当作学习笔记,

    2024年02月05日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包