无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)

这篇具有很好参考价值的文章主要介绍了无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、七种算法(DBO、LO、SWO、COA、LSO、KOA、GRO)简介

1、蜣螂优化算法DBO

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)_蜣螂算法-CSDN博客

参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). Dung beetle optimizer: a new meta-heuristic algorithm for global optimization | The Journal of Supercomputing

2、狐猴优化算法LO

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。单目标应用:基于狐猴优化算法(Lemurs Optimizer,LO)的微电网优化调度MATLAB_狐猴优化算法什么时候提出的-CSDN博客

参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

3、蜘蛛蜂优化算法SWO

蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW(MATLAB):蜘蛛蜂优化算法SWO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)_swo蜘蛛峰优化器算法-CSDN博客

参考文献:

[1]Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm | SpringerLink

4、小龙虾优化算法COA

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB_小龙虾算法-CSDN博客

参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

5、光谱优化算法LSO

光谱优化算法(Light Spectrum Optimizer,LSO)由Mohamed Abdel-Basset等人于2022年提出。MD-MTSP:光谱优化算法LSO求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)-CSDN博客

参考文献:

[1]Abdel-Basset M, Mohamed R, Sallam KM, Chakrabortty RK. Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm. Mathematics. 2022; 10(19):3466. Mathematics | Free Full-Text | Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm

6、开普勒优化算法KOA

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。五种最新优化算法(SWO、ZOA、EVO、KOA、GRO)求解23个基准测试函数(含参考文献及MATLAB代码)_目前最新的种群优化算法-CSDN博客

参考文献:

Mohamed Abdel-Basset, Reda Mohamed, Shaimaa A. Abdel Azeem, Mohammed Jameel, Mohamed Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion, Knowledge-Based Systems, 2023. DOI: Redirecting

7、淘金优化算法GRO

淘金优化算法(Gold rush optimizer,GRO)由Kamran Zolf于2023年提出,其灵感来自淘金热,模拟淘金者进行黄金勘探行为。VRPTW(MATLAB):淘金优化算法GRO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

K. Zolfi. Gold rush optimizer: A new population-based metaheuristic algorithm. Operations Research and Decisions 2023: 33(1), 113-150. DOI 10.37190/ord230108

二、模型简介

单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客

参考文献:

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

三、DBO、LO、SWO、COA、LSO、KOA、GRO求解无人机路径规划

(1)部分代码

close all
clear  
clc
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F1'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=100; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
AlgorithmName={'DBO','LO','SWO','COA','LSO','KOA','GRO'};%算法名称
addpath('./AlgorithmCode/')%添加算法路径
bestFit=[];%保存各算法的最优适应度值
for i=1:size(AlgorithmName,2)%遍历每个算法,依次求解当前问题
Algorithm=str2func(AlgorithmName{i});%获取当前算法名称,并将字符转换为函数
[Best_score,Best_pos,Convergence_curve]=Algorithm(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%当前算法求解
%将当前算法求解结果放入data中
data(i).Best_score=Best_score;%保存该算法的Best_score到data
data(i).Best_pos=Best_pos;%保存该算法的Best_pos到data
data(i).Convergence_curve=Convergence_curve;%保存该算法的Convergence_curve到data
bestFit=[bestFit data(i).Best_score];
end

%%  画各算法的直方图
figure 
bar(bestFit)
ylabel('无人机飞行路径长度');
set(gca,'xtick',1:1:size(AlgorithmName,2));
set(gca,'XTickLabel',AlgorithmName)
saveas(gcf,'./Picture/直方图.jpg') %将图片保存到Picture文件夹下面


%%  画收敛曲线
strColor={'r-','g-','b-','k-','m-','c-','y-'};
figure
for i=1:size(data,2)
plot(data(i).Convergence_curve,strColor{i},'linewidth',1.5)%semilogy
hold on
end
xlabel('迭代次数');
ylabel('无人机飞行路径长度');
legend(AlgorithmName,'Location','Best')
saveas(gcf,'./Picture/收敛曲线.jpg') %将图片保存到Picture文件夹下面


%% 显示三维图并保存
path=plotFigure(data,AlgorithmName,strColor);%path是各算法求解的无人机路径
saveas(gcf,'./Picture/路径曲线(三维).jpg') %将图片保存到Picture文件夹下面


%% 显示二维图并保存
view(2)
saveas(gcf,'./Picture/路径曲线(二维).jpg') %将图片保存到Picture文件夹下面

(2)部分结果

无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码),MATLAB,优化算法,无人机路径规划,无人机,算法,matlab,python,强化学习,人工智能,开发语言

无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码),MATLAB,优化算法,无人机路径规划,无人机,算法,matlab,python,强化学习,人工智能,开发语言

无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码),MATLAB,优化算法,无人机路径规划,无人机,算法,matlab,python,强化学习,人工智能,开发语言

无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码),MATLAB,优化算法,无人机路径规划,无人机,算法,matlab,python,强化学习,人工智能,开发语言文章来源地址https://www.toymoban.com/news/detail-814086.html

四、完整MATLAB代码

到了这里,关于无人机航迹规划(一)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于蜣螂算法的无人机航迹规划-附代码

    摘要:本文主要介绍利用蜣螂算法来优化无人机航迹规划。 蜣螂搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/128280084 ​ 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基 础和前提,其中第一步便是如何描述规划空间中的障碍物

    2024年02月11日
    浏览(40)
  • 基于野狗算法的无人机航迹规划-附代码

    摘要:本文主要介绍利用野狗算法来优化无人机航迹规划。 野狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/122368818 ? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基 础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采

    2024年02月05日
    浏览(46)
  • 基于供需算法的无人机航迹规划-附代码

    摘要:本文主要介绍利用供需算法来优化无人机航迹规划。 供需算法原理请参考:https://blog.csdn.net/u011835903/article/details/118800934 ? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基 础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采

    2024年02月06日
    浏览(42)
  • 基于松鼠算法的无人机航迹规划-附代码

    摘要:本文主要介绍利用松鼠算法来优化无人机航迹规划。 松鼠算法原理请参考:https://blog.csdn.net/u011835903/article/details/116223542 ? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基 础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采

    2024年02月06日
    浏览(42)
  • 【无人机三维路径规划】基于飞狐算法FFO实现复杂地形无人机三维航迹规划附Matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年03月14日
    浏览(139)
  • 基于入侵杂草算法的无人机航迹规划-附代码

    摘要:本文主要介绍利用入侵杂草算法来优化无人机航迹规划。 入侵杂草算法原理请参考:https://blog.csdn.net/u011835903/article/details/108491479 ? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基 础和前提,其中第一步便是如何描述规划空间中的障碍物。首先

    2024年02月08日
    浏览(57)
  • 【无人机三维路径规划】基于蜜獾算法实现复杂地形无人机三维航迹规划附含Matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年02月21日
    浏览(161)
  • 基于旗鱼算法的无人机航迹规划-附代码

    摘要:本文主要介绍利用旗鱼算法来优化无人机航迹规划。 旗鱼算法原理请参考:https://blog.csdn.net/u011835903/article/details/109256699 ? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基 础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采

    2024年02月07日
    浏览(40)
  • 【无人机三维路径规划】基于狐狸算法FOX实现复杂地形无人机避障航迹规划附Matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年02月22日
    浏览(52)
  • 【无人机三维路径规划Matlab代码】基于棕熊算法BrownOA实现复杂地形无人机避障三维航迹规划

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年02月21日
    浏览(124)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包