5G_射频测试_接收机测量(五)

这篇具有很好参考价值的文章主要介绍了5G_射频测试_接收机测量(五)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

7.2 Reference sensitivity level
  • 接收灵敏度是表示接收机能解析出信号的最小功率(和接收机noise figure相关所以RX lineup的大部分工作就是在调整Gain达到最佳NF)
  • The throughput shall be ≥ 95%(BER:bit error rate 并不是L3call的tput)
  • 对不同调制的信号要求也不一样,高阶调制信号需要更高的分辨率所以调制阶数越高能达到的灵敏度越低
  • 但实际上我们只测试最低的调制方式用于验证硬件能力
  • 测试信号暂用的频谱只有1/4的载波带宽,所以在自己做波形的时候要功率的分配弄错了灵敏度的接错就相差了6dB(在5G初期仪表厂家也犯过一样的错)
  • Table 7.2.5-1: NR Wide Area BS reference sensitivity levels

BS channel

Sub-carrier

Reference

Reference sensitivity power level, PREFSENS (dBm)

bandwidth (MHz)

spacing (kHz)

measurement channel

f ≤ 3.0 GHz

3.0 GHz < f ≤ 4.2 GHz

4.2 GHz < f ≤ 6.0 GHz

5, 10, 15

15

G-FR1-A1-1 (Note 1)

-101

-100.7

-100.5

G-FR1-A1-10 (Note 3)

-101 (Note 2)

-100.7 (Note 2)

-100.5 (Note 2)

10, 15

30

G-FR1-A1-2 (Note 1)

-101.1

-100.8

-100.6

10, 15

60

G-FR1-A1-3 (Note 1)

-98.2

-97.9

-97.7

20, 25, 30, 40,

15

G-FR1-A1-4 (Note 1)

-94.6

-94.3

-94.1

50

G-FR1-A1-11 (Note 4)

-94.6 (Note 2)

-94.3 (Note 2)

-94.1 (Note 2)

20, 25, 30, 40, 50, 60, 70, 80, 90, 100

30

G-FR1-A1-5 (Note 1)

-94.9

-94.6

-94.4

20, 25, 30, 40, 50, 60, 70, 80, 90, 100

60

G-FR1-A1-6 (Note 1)

-95

-94.7

-94.5

7.3 Dynamic range
  • 用来验证上行抗干扰的能力
  • 在典型的信号下(信号功率太大会导致基站饱和(LNA)当然也不能太小)加入高斯白噪声,看基站是否能解码
  • the throughput shall be ≥ 95%
  • 经常会调高噪声,验证基站能对抗多大的干扰。或者降低有用信号的功率。总之就是改变信噪比。
  • Table 7.3.5-1: Wide Area BS dynamic range

BS channel bandwidth (MHz)

Subcarrier spacing (kHz)

Reference measurement channel

Wanted signal mean power (dBm)

Interfering signal mean power (dBm) / BWConfig

Type of interfering signal

5

15

G-FR1-A2-1

-70.4

-82.5

AWGN

30

G-FR1-A2-2

-71.1

10

15

G-FR1-A2-1

-70.4

-79.3

AWGN

30

G-FR1-A2-2

-71.1

60

G-FR1-A2-3

-68.1

7.4 In-band selectivity and blocking (除了dynamic range是测试抗干扰能那在operation band内如果有干扰了,那我们怎么测试基站的抗干扰性能)

7.4.1 Adjacent Channel Selectivity (ACS)

  • 在operation band内我们的腔体滤波器是没有办法过滤干扰的,只能靠数字滤波
  • 和Dynamic range不一样的是干扰信号可能是自己或其他基站的杂散信号,所以这次干扰信号就是和载波信号一样的调制信号
  • 那么调制信号有不同的阶数,并且阶数越高抗干扰越差,那这个case的测试信号一般就选用高阶的调制信号

Table 7.4.1.5-1: Base station ACS requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

5, 10, 15, 20,
25, 30, 40, 50, 60, 70, 80, 90, 100
(Note 1)

PREFSENS + 6 dB

Wide Area BS: -52

Medium Range BS: -47

Local Area BS: -44

7.4.2 In-band blocking

  • Operating band 以内符合general 和narrow blocking的要求
  • 和wanted信号靠的很近是容易fail的case

in-band blocking requirement applies from FUL_low - ΔfOOB to FUL_high + ΔfOOB, excluding the downlink frequency range of the operating band

Table 7.4.2.5-0: ΔfOOB offset for NR operating bands

BS type

Operating band characteristics

ΔfOOB (MHz)

BS type 1-C

FUL_high – FUL_low ≤ 200 MHz

20

200 MHz < FUL_high – FUL_low ≤ 900 MHz

60

Table 7.4.2.5-1: Base station general blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)

Type of interfering signal

5, 10, 15, 20

PREFSENS + 6 dB

Wide Area BS: -43

Medium Range BS: -38

Local Area BS: -35

±7.5

5 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs

25, 30, 40, 50, 60, 70, 80, 90, 100

PREFSENS + 6 dB

Wide Area BS: -43

Medium Range BS: -38

Local Area BS: -35

±30

20 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs

NOTE: PREFSENS depends on the RAT. For NR, PREFSENS depends also on the BS channel bandwidth as specified in TS 38.104 [2], table 7.2.2-1, 7.2.2-2 and 7.2.2-3. For NB-IoT, PREFSENS depends also on the sub-carrier spacing as specified in tables 7.2-5, 7.2-6 and 7.2-8 of TS 36.141 [24].

Table 7.4.2.5-2: Base station narrowband blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100

(Note 1)

PREFSENS + 6 dB

Wide Area BS: -49

Medium Range BS: -44

Local Area BS: -41

NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that BS channel bandwidth

NOTE 2: PREFSENS depends on the BS channel bandwidth as specified in TS 38.104 [2], table 7.2.2-1, 7.2.2-2 and 7.2.2-3.

NOTE 3: 7.5 kHz shift is not applied to the wanted signal.

7.5 Out-of-band blocking

测完了带的抗干扰的验证就到带外了

特点测试耗时长

The CW interfering signal shall be swept with a step size of 1 MHz over than range 1 MHz to (FUL_low - ΔfOOB) MHz and (FUL_high + ΔfOOB) MHz to 12750 MHz.

Table 7.5.5.1-1: Out-of-band blocking performance requirement

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

Type of interfering signal

PREFSENS +6 dB
(Note 1)

-15

CW carrier

7.5.5.2 Co-location requirements

除了一般的带外blocking还有DL 频带的co-location 模拟TX有大功率落在接收频段

Table 7.5.5.2-1: Blocking performance requirement for NR BS when co-located with BS in other frequency bands.

Frequency range of interfering signal

Wanted signal mean power for WA BS (dBm)

Interfering signal mean power for WA BS (dBm)

Interfering signal mean power for MR BS (dBm)

Interfering signal mean power for LA BS (dBm)

Type of interfering signal

Frequency range of co-located downlink operating band

PREFSENS +6dB
(Note 1)

+16

+8

x (Note 2)

CW carrier

7.6 Receiver spurious emissions

一般没有问题,测试意义不大

The receiver spurious emissions power is the power of emissions generated or amplified in a receiver unit that appear at the antenna connector (for BS type 1-C) or at the TAB connector (for BS type 1-H). The requirements apply to all BS with separate RX and TX antenna connectors / TAB connectors.

NOTE: In this case for FDD operation the test is performed when both TX and RX are ON, with the TX antenna connectors / TAB connectors terminated.

For TDD connectors capable of transmit and receive ensure the transmitter is OFF.

Table 7.6.5.1-1: General BS receiver spurious emissions limits

Spurious frequency range

Basic limit

Measurement bandwidth

Notes

30 MHz – 1 GHz

-57 dBm

100 kHz

Note 1

1 GHz – 12.75 GHz

-47 dBm

1 MHz

Note 1, Note 2

12.75 GHz – 5th harmonic of the upper frequency edge of the UL operating band in GHz

-47 dBm

1 MHz

Note 1, Note 2, Note 3

7.7 Receiver intermodulation

two interfering RF signals can produce an interfering signal in the band of the desired channel

The throughput shall be ≥ 95%

Table 7.7.5-1: General intermodulation requirement

Base Station type

Wanted Signal mean power (dBm)

Mean power of interfering signals (dBm)

Type of interfering signals

Wide Area BS

PREFSENS + 6 dB

-52

Medium Range BS

PREFSENS + 6 dB

-47

See table 7.7.5-2

Table 7.7.5-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz)

Type of interfering signal (Note 3)

100

±7.48

CW

±25

20 MHz DFT-s-OFDM NR signal, (Note 2)

NOTE 1: For the 15 kHz subcarrier spacing, the number of RB is 25. For the 30 kHz subcarrier spacing, the number of RB is 10.

NOTE 2: For the 15 kHz subcarrier spacing, the number of RB is 100. For the 30 kHz subcarrier spacing, the number of RB is 50. For the 60 kHz subcarrier spacing, the number of RB is 24.

NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth configuration edge which is closer to the Base Station RF Bandwidth edge.

7.8 In-channel selectivity

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations at the antenna connector

ACS是相邻信道的选择性,ICS就是载波内PRB的选择性,wanted signal摆在中心频点两边,interfering signal摆在另一边

Table 7.8.5-1: Wide Area BS in-channel selectivity

NR channel bandwidth

Subcarrier spacing

Reference measurement

Wanted signal mean power (dBm)

Interfering signal mean

Type of interfering signal

(MHz)

(kHz)

channel

f ≤ 3.0 GHz

3.0 GHz < f ≤ 4.2 GHz

4.2 GHz < f ≤ 6.0 GHz

power (dBm)

40, 50, 60, 70, 80, 90, 100

30

G-FR1-A1-5

-91.2

-90.8

-90.5

-71.4

DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs

NOTE: Wanted and interfering signal are placed adjacently around Fc, where the Fc is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1 in TS 38.104 [2]. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal.文章来源地址https://www.toymoban.com/news/detail-814215.html

到了这里,关于5G_射频测试_接收机测量(五)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python 进行卫星坐标计算和接收机坐标计算

    python 进行卫星坐标计算和接收机坐标计算 卫星坐标计算 流程以及相关公式 从上一篇文章中我们获取到了广播星历中的文件(N文件读取),通过N文件中的数据以及周内秒我们可以计算出卫星的坐标。Python读取O文件以及N文件_Hxdih的博客-CSDN博客 在计算卫星坐标时,我们需要做到

    2024年02月03日
    浏览(44)
  • 基于simulink的信道化接收机建模与仿真

    目录 1.发送模块设计 2.接收模块的设计 3.仿真测试 4.基于matlab的误码率仿真         信道化接收机建模是指在通信系统中,对接收机的行为和性能进行数学建模和分析,以便更好地理解和优化通信系统的性能。在数字通信系统中,信道化接收机的建模涉及到对信道、噪声、解

    2024年02月04日
    浏览(39)
  • ExpressLRS开源之接收机固件编译烧录步骤

    ExpressLRS是航模上目前比较流行的开源发射机和接收机开源代码之一。 其目的旨在提供最好的完全开放、高刷新率的无线电控制链路,同时以低延迟保持该速率下的最大可实现范围,在900MHz和2.4GHz频率下对硬件提供大量支持。 这个也是笔者一直使用的RC控制链路。从无人机的

    2024年02月10日
    浏览(51)
  • 手机接收机的功能电路(1)---天线、低噪放、混频器

    话机本身的天线一般为螺旋鞭状天线或短鞭状天线。移动台的天线具有足够宽的工作频带,它工作于全部的收发信道,基本上所有的蜂窝话机都可使用内接和外接天线。 天线分为发射天线与接收天线,将高频电流转化为高频电磁波传送出去的导体被称为发射天线;将高频电磁

    2024年02月11日
    浏览(37)
  • 5G_射频测试_发射机测量(四)

    6.2 Base station output power 用于测量载波发射功率的大小,功率越大小区半径越大但是杂散也会越大 载波功率(用频谱仪测) 天线口功率(用功率计测) 载波功率是以RBW为单位的filter测量的积分功率 不同带宽的多载波测试时分为同样的功率谱密度或者每个再多带宽平衡 6.3.2 R

    2024年01月21日
    浏览(50)
  • 5G_射频测试_基础概念(二)

    定义了测试参考点,不同的RRU类型 C类型传统RRU Conducted and radiated requirement reference points 4.3.1    BS type 1-C(传统RRU一般测试点就是连接天线的射频接头) 4.3.2    BS type 1-H(宏站MassiveMIMO 矩阵天线) 4.3.3    BS type 1-O and BS type 2-O(矩阵天线之后OTA测试) Operating bands and chann

    2024年01月22日
    浏览(37)
  • 5G_射频测试_参考规范(一)

    参考规范: •    Base Station (BS) conformance testing(重点limitation) Directory Listing /ftp/Specs/archive/38_series/38.104 (3gpp.org) •    Conducted conformance testing(传导测试)3GPP 38.141-1 6.7 Transmitter intermodulation Directory Listing /ftp/Specs/archive/38_series/38.141-1 (3gpp.org) •    Radiated conformance testing (

    2024年01月21日
    浏览(39)
  • 深入了解5G终端射频标准中的频谱发射与互调特性

    前面的频谱发射我们已经学习了占用带宽、带外发射和杂散发射,今天是频谱发射的最后一部分内容: 互调 。在很多的标准规范中,都有互调测试的相关内容,但测试条件、测试要求和测试方法都不尽相同。我们可以不必纠结互调是否有某种固定的说法,而是关注和了解它

    2024年01月25日
    浏览(52)
  • 美格智能基于骁龙X75和X72调制解调器及射频系统发布新一代5G R17通信模组,开启5G新阶段

    3月14日,在 Embedded World 2023德国纽伦堡国际嵌入式系统展 会上,全球领先的无线通信模组及解决方案提供商美格智能正式发布了 新一代5G R17通信模组SRM817系列和SRM817WE系列 。此次推出的5G模组均 全面支持3GPP Release 17标准及特性 ,拥有更快的网络速率、更强的处理性能和更丰

    2024年02月16日
    浏览(58)
  • 5G RRU delay 测量(九)

    1 UTU = 1 universal time unit = 1/1.2288GHz = 0.813802…ns The BCN (BTS clock number) counter counts 10ms CPRI 1 frames (counter N1) and 2 1.2288GHz clock cycles within one CPRI frame (counter N2). LTE时代定义的单位:TS = 1/(15K*2048)= 1/30.72M 5G时代定义的单位: Tc = 1/(480K*4096)= 1/1966.08M 为了方便计算定义了 “K” K =

    2024年01月23日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包