逻辑回归中的损失函数

这篇具有很好参考价值的文章主要介绍了逻辑回归中的损失函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、引言

        逻辑回归中的损失函数通常采用的是交叉熵损失函数(cross-entropy loss function)。在逻辑回归中,我们通常使用sigmoid函数将线性模型的输出转换为概率值,然后将这些概率值与实际标签进行比较,从而计算损失。

二、交叉熵损失函数

        在逻辑回归解决二分类问题的学习中,我们认识到逻辑回归的输出结果可以看成输入时输出为正例()的概率。

分解如下:

        于是我们便想到可以通过比较模型预测的概率分布和实际标签之间的差异来衡量模型的准确性。在信息论中,交叉熵用来比较两个概率分布之间的差异。

定义:交叉熵损失函数(Cross-entropy loss function)是一种用于衡量模型输出与实际标签之间差异的损失函数。在机器学习中,交叉熵损失函数通常用于分类问题中,特别是在逻辑回归和神经网络等模型中。

对于一个逻辑回归函数:

逻辑回归中的损失函数,人工智能入门,逻辑回归,算法,机器学习

损失函数公式:   

简化后的公式:

(整体)损失函数:

根据损失函数的定义,当的值与目标值越接近,损失函数值越小,预测越准确。

所以:

    

以预测肿瘤的例子说明,如果模型预测患者的肿瘤极大概率(如99.9%)是恶性,而实际却不是恶性,我们会得到一个极大的损失函数值。简单来说,模型的预测值距离y的真实值越远,损失越大。

逻辑回归中的损失函数,人工智能入门,逻辑回归,算法,机器学习

三、为什么不使用均方差损失函数

非凸性:均方差损失函数在逻辑回归中会导致损失函数变成非凸函数,这会导致优化过程变得非常困难。因为非凸函数有多个局部最小值, 而均方差损失函数可能会陷入局部最小值而无法到达全局最小值,这回影响模型的训练效果。

逻辑回归中的损失函数,人工智能入门,逻辑回归,算法,机器学习

输出范围不同:逻辑回归的输出是概率值,范围在0到1之间,而均方差损失函数对于这种概率输出不敏感,它对于离群值(outliers)非常敏感。这意味着即使是一个很小的偏离,也会导致损失函数变得非常大,从而使得模型对于异常值非常敏感。

四、梯度下降实现  

        在线性回归中,我们引入了一种用于求解模型的方法——梯度下降法。对于逻辑回归模型,我们也可以采用相同的方法。

 对于(整体)损失函数:

进行以下操作:

repeat{

            

            

            

            

            

}simultaneous updates

我们不难发现,逻辑回归的梯度下降和之前线性回归中的梯度下降基本一致,唯一不同的是发生了变化。 所以在逻辑回归中也可以使用特征缩放的方法加快梯度下降法的收敛速度。文章来源地址https://www.toymoban.com/news/detail-814499.html

到了这里,关于逻辑回归中的损失函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 初识人工智能,一文读懂机器学习之逻辑回归知识文集(1)

    🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论⭐收藏 🔎 人工智能领域知识 🔎 链接 专栏 人工智能专业知识学习一 人工智能专栏 人

    2024年01月23日
    浏览(58)
  • 人工智能基础_机器学习007_高斯分布_概率计算_最小二乘法推导_得出损失函数---人工智能工作笔记0047

    这个不分也是挺难的,但是之前有详细的,解释了,之前的文章中有, 那么这里会简单提一下,然后,继续向下学习 首先我们要知道高斯分布,也就是,正太分布, 这个可以预测x在多少的时候,概率最大 要知道在概率分布这个,高斯分布公式中,u代表平均值,然后西格玛代表标准差,知道了

    2024年02月07日
    浏览(68)
  • 人工智能_机器学习065_SVM支持向量机KKT条件_深度理解KKT条件下的损失函数求解过程_公式详细推导_---人工智能工作笔记0105

    之前我们已经说了KKT条件,其实就是用来解决 如何实现对,不等式条件下的,目标函数的求解问题,之前我们说的拉格朗日乘数法,是用来对 等式条件下的目标函数进行求解. KKT条件是这样做的,添加了一个阿尔法平方对吧,这个阿尔法平方肯定是大于0的,那么 可以结合下面的文章去

    2024年02月04日
    浏览(40)
  • 【人工智能】— 无监督学习、K-means聚类(K-means clustering)、K-means损失函数,目标函数

    无监督学习是指在没有标签的数据上进行学习,即没有监督信号的指导下进行模型训练。在无监督学习中,我们主要关注从无标签数据中学习出数据的低维结构和隐藏的模式。 通过无标签数据,我们可以预测以下内容: 低维结构:通过无监督学习算法如主成分分析(PCA),

    2024年02月10日
    浏览(41)
  • 【人工智能与深度学习】均方损失,交叉墒损失,vgg损失,三元组损失

    均方损失,交叉墒损失,vgg损失,三元组损失的应用场景有哪些 均方损失(Mean Squared Error, MSE),交叉熵损失(Cross-Entropy Loss),和三元组损失(Triplet Loss)是机器学习和深度学习中常用的损失函数,每个都适用于不同的应用场景: 1. 均方损失(MSE) 应用场景 :主要用于回

    2024年01月22日
    浏览(94)
  • 神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释

    逻辑回归损失函数是用来衡量逻辑回归模型预测与实际观测之间差异的函数。它的目标是找到一组模型参数,使得预测结果尽可能接近实际观测。 在逻辑回归中,常用的损失函数是对数似然损失(Log-Likelihood Loss),也称为交叉熵损失(Cross-Entropy Loss)。它在分类问题中非常

    2024年02月12日
    浏览(44)
  • 【吴恩达·机器学习】第三章:分类任务:逻辑回归模型(交叉熵损失函数、决策边界、过拟合、正则化)

    博主简介: 努力学习的22级计算机科学与技术本科生一枚🌸 博主主页: @Yaoyao2024 每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义

    2024年02月19日
    浏览(57)
  • 神经网络中的损失函数(上)——回归任务

    神经网络是深度学习的基础。在神经网络中,损失函数和优化函数是两个非常重要的概念,它们共同决定了模型的性能和训练效果。本文将介绍神经网络中比较常用的损失函数。 损失函数是用于量化预测值与真实值之间误差大小的一个非负函数。数值越小表示损失越小,完美

    2024年01月19日
    浏览(38)
  • 人工智能 :一种现代的方法 第七章 逻辑智能体

    本文旨在讲清楚: KBA(knowledge based agent)与逻辑 模型,有效性,可满足性,蕴含,推理过程 如何证明KB蕴含a(模型检验,逻辑等价,推理规则) 基于命题逻辑的Agent如何工作的 7.1 基于知识的智能体 基于知识的系统 基于知识的Agent的核心部件是其知识库,或称KB。 知识库

    2024年01月22日
    浏览(44)
  • 人工智能-线性回归的从零开始实现

    在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。 在这一节中,我们将从零开始实现整个方法, 包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。 虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现

    2024年02月08日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包