自然语言处理中的词云生成

这篇具有很好参考价值的文章主要介绍了自然语言处理中的词云生成。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.词云的介绍

自然语言处理中的词云技术是文本可视化的一种形式,用于展示文本数据中词语的频率分布。以下是词云在自然语言处理中的基本介绍和发展:

起源和发展: 词云的概念最初来源于信息可视化领域,用于将文本中的关键词以视觉方式呈现。在自然语言处理中,词云得到了广泛的应用,特别是在文本分析、舆情分析、关键词提取等任务中。

工作原理: 词云生成的基本原理是通过文本中每个词的频率来确定词语的大小,频率高的词显示更大,频率低的词显示更小。一般来说,生成词云的过程包括文本的分词、词频统计和可视化展示。

文本清洗和预处理: 为了生成有意义的词云,需要对文本进行清洗和预处理。这包括去除停用词、标点符号,进行分词等。清洁的文本有助于更准确地反映文本的主题和关键词。

技术工具: Python中的WordCloud库是一个常用的工具,用于生成词云。此外,其他数据可视化库如Matplotlib、Seaborn等也可以与词云生成库结合使用。

应用领域: 词云技术在自然语言处理中广泛应用于文本可视化、舆情分析、主题分析、关键词提取等任务。它为用户提供了直观、易懂的方式来了解文本数据的重要特征。

发展趋势: 随着自然语言处理和数据可视化技术的不断发展,词云技术也在不断演进。近年来,一些先进的可视化方法和工具被引入,使得生成更具交互性和信息密度的词云成为可能。

总体而言,词云作为一种简单而直观的文本可视化工具,对于初步了解文本数据的关键信息非常有用。然而,在更复杂的文本分析任务中,更先进的自然语言处理技术和可视化方法可能被采用。

二.基本步骤

词云是一种可视化技术,常用于展示文本数据中词语的频率分布。在自然语言处理中,词云生成可以通过以下步骤完成:

1.1 文本数据处理: 首先,需要准备文本数据。这可以是一段文章、评论、新闻等文本内容。确保文本数据已经被清理、分词,并去除了停用词(常见但无实际意义的词语)。

1.2 词频统计: 对处理后的文本进行词频统计,计算每个词语在文本中的出现频率。这可以通过简单的计数或使用专业的自然语言处理库进行。

1.3 生成词云图: 使用词云生成工具或库,将词频统计结果转换为可视化的词云图。常用的工具包括Python中的WordCloud库。

1.4 调整参数: 根据需求,可以调整词云生成的参数,例如字体、颜色、形状等。这有助于生成更具吸引力和表现力的词云图。

1.5 可视化展示: 将生成的词云图进行可视化展示。这可以通过将词云嵌入到网页、报告中,或直接显示在应用程序中。

三.案例分析

相关数据集如下链接
https://download.csdn.net/download/qq_37977007/88767801

# 1.导入模块包
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
# 2.创建停用词的列表
stopwords = [line.strip() for line in open('english_stopwords.txt', 'r', encoding='utf-8').readlines()]
# 3.对句子进行分词
def seg_sentence(sentence):
    words_sentence = jieba.cut(sentence.strip())
    outstr = ''
    for word_sentence in words_sentence:
        if word_sentence not in stopwords:
            if word_sentence != '\t':
                outstr = outstr + word_sentence
                outstr = outstr + " "
    return outstr
if __name__ == "__main__":
    # 4.读取文本,对文本的句子进行分词
    inputs =  open('wordcloud.txt', 'r', encoding='utf8')
    outputs = open('output.txt', 'w')
    for line in inputs:
        line_Seg = seg_sentence(line)
        outputs.write(line_Seg)
    outputs.close()
    inputs.close()
    # 5.调用词云库构建词云,保存结果
    wordcloud = open('output.txt', 'r')
    mytext = wordcloud.read()
    wordcloud = WordCloud(width=2000,height=2000,max_words=20,min_word_length=4, background_color="white").generate(mytext)
    plt.imshow(wordcloud)
    plt.show()
    plt.savefig('result.png')
    plt.axis('off')

自然语言处理中的词云生成,自然语言处理,自然语言处理,人工智能

四.词云中的参数介绍

在生成词云时,通常可以设置一些参数来调整词云的外观和生成方式。以下是一些常见的词云参数及其介绍:

width和height:
    介绍: 指定词云图的宽度和高度。
    示例: WordCloud(width=800, height=400)

background_color:
    介绍: 指定词云的背景颜色。
    示例: WordCloud(background_color="white")

max_words:
    介绍: 指定词云中显示的最大单词数量。
    示例: WordCloud(max_words=100)

collocations:
    介绍: 控制是否考虑词汇搭配(collocations),即词语之间的共现关系。
    示例: WordCloud(collocations=False)

stopwords:
    介绍: 指定停用词列表,这些词将被排除在词云之外。
    示例: WordCloud(stopwords={"the", "and", "is"})

font_path:
    介绍: 指定用于词云的字体文件路径。
    示例: WordCloud(font_path="path/to/font.ttf")

max_font_size:
    介绍: 控制词云中最大字体的大小。
    示例: WordCloud(max_font_size=50)

min_font_size:
    介绍: 控制词云中最小字体的大小。
    示例: WordCloud(min_font_size=10)

random_state:
    介绍: 用于控制词云生成的随机性,设置相同的值可以得到相同的输出。
    示例: WordCloud(random_state=42)

mask:
    介绍: 指定用作词云形状的蒙版图像,词云将在该形状内生成。
    示例: WordCloud(mask=mask_image)

这只是一些常见的参数,具体使用时可以根据需要调整。不同的词云生成库可能有不同的参数设置,具体参考相应库的文档。文章来源地址https://www.toymoban.com/news/detail-814506.html

五.词云相关的官方代码如下

# coding=utf-8
# Author: Andreas Christian Mueller <t3kcit@gmail.com>
#
# (c) 2012
# Modified by: Paul Nechifor <paul@nechifor.net>
#
# License: MIT

from __future__ import division

import warnings
from random import Random
import io
import os
import re
import base64
import sys
import colorsys
import matplotlib
import numpy as np
from operator import itemgetter
from xml.sax import saxutils

from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFilter
from PIL import ImageFont

from .query_integral_image import query_integral_image
from .tokenization import unigrams_and_bigrams, process_tokens

FILE = os.path.dirname(__file__)
FONT_PATH = os.environ.get('FONT_PATH', os.path.join(FILE, 'DroidSansMono.ttf'))
STOPWORDS = set(map(str.strip, open(os.path.join(FILE, 'stopwords')).readlines()))


class IntegralOccupancyMap(object):
    def __init__(self, height, width, mask):
        self.height = height
        self.width = width
        if mask is not None:
            # the order of the cumsum's is important for speed ?!
            self.integral = np.cumsum(np.cumsum(255 * mask, axis=1),
                                      axis=0).astype(np.uint32)
        else:
            self.integral = np.zeros((height, width), dtype=np.uint32)

    def sample_position(self, size_x, size_y, random_state):
        return query_integral_image(self.integral, size_x, size_y,
                                    random_state)

    def update(self, img_array, pos_x, pos_y):
        partial_integral = np.cumsum(np.cumsum(img_array[pos_x:, pos_y:],
                                               axis=1), axis=0)
        # paste recomputed part into old image
        # if x or y is zero it is a bit annoying
        if pos_x > 0:
            if pos_y > 0:
                partial_integral += (self.integral[pos_x - 1, pos_y:]
                                     - self.integral[pos_x - 1, pos_y - 1])
            else:
                partial_integral += self.integral[pos_x - 1, pos_y:]
        if pos_y > 0:
            partial_integral += self.integral[pos_x:, pos_y - 1][:, np.newaxis]

        self.integral[pos_x:, pos_y:] = partial_integral


def random_color_func(word=None, font_size=None, position=None,
                      orientation=None, font_path=None, random_state=None):
    """Random hue color generation.

    Default coloring method. This just picks a random hue with value 80% and
    lumination 50%.

    Parameters
    ----------
    word, font_size, position, orientation  : ignored.

    random_state : random.Random object or None, (default=None)
        If a random object is given, this is used for generating random
        numbers.

    """
    if random_state is None:
        random_state = Random()
    return "hsl(%d, 80%%, 50%%)" % random_state.randint(0, 255)


class colormap_color_func(object):
    """Color func created from matplotlib colormap.

    Parameters
    ----------
    colormap : string or matplotlib colormap
        Colormap to sample from

    Example
    -------
    >>> WordCloud(color_func=colormap_color_func("magma"))

    """
    def __init__(self, colormap):
        import matplotlib.pyplot as plt
        self.colormap = plt.cm.get_cmap(colormap)

    def __call__(self, word, font_size, position, orientation,
                 random_state=None, **kwargs):
        if random_state is None:
            random_state = Random()
        r, g, b, _ = np.maximum(0, 255 * np.array(self.colormap(
            random_state.uniform(0, 1))))
        return "rgb({:.0f}, {:.0f}, {:.0f})".format(r, g, b)


def get_single_color_func(color):
    """Create a color function which returns a single hue and saturation with.
    different values (HSV). Accepted values are color strings as usable by
    PIL/Pillow.

    >>> color_func1 = get_single_color_func('deepskyblue')
    >>> color_func2 = get_single_color_func('#00b4d2')
    """
    old_r, old_g, old_b = ImageColor.getrgb(color)
    rgb_max = 255.
    h, s, v = colorsys.rgb_to_hsv(old_r / rgb_max, old_g / rgb_max,
                                  old_b / rgb_max)

    def single_color_func(word=None, font_size=None, position=None,
                          orientation=None, font_path=None, random_state=None):
        """Random color generation.

        Additional coloring method. It picks a random value with hue and
        saturation based on the color given to the generating function.

        Parameters
        ----------
        word, font_size, position, orientation  : ignored.

        random_state : random.Random object or None, (default=None)
          If a random object is given, this is used for generating random
          numbers.

        """
        if random_state is None:
            random_state = Random()
        r, g, b = colorsys.hsv_to_rgb(h, s, random_state.uniform(0.2, 1))
        return 'rgb({:.0f}, {:.0f}, {:.0f})'.format(r * rgb_max, g * rgb_max,
                                                    b * rgb_max)
    return single_color_func


class WordCloud(object):
    r"""Word cloud object for generating and drawing.

    Parameters
    ----------
    font_path : string
        Font path to the font that will be used (OTF or TTF).
        Defaults to DroidSansMono path on a Linux machine. If you are on
        another OS or don't have this font, you need to adjust this path.

    width : int (default=400)
        Width of the canvas.

    height : int (default=200)
        Height of the canvas.

    prefer_horizontal : float (default=0.90)
        The ratio of times to try horizontal fitting as opposed to vertical.
        If prefer_horizontal < 1, the algorithm will try rotating the word
        if it doesn't fit. (There is currently no built-in way to get only
        vertical words.)

    mask : nd-array or None (default=None)
        If not None, gives a binary mask on where to draw words. If mask is not
        None, width and height will be ignored and the shape of mask will be
        used instead. All white (#FF or #FFFFFF) entries will be considerd
        "masked out" while other entries will be free to draw on. [This
        changed in the most recent version!]

    contour_width: float (default=0)
        If mask is not None and contour_width > 0, draw the mask contour.

    contour_color: color value (default="black")
        Mask contour color.

    scale : float (default=1)
        Scaling between computation and drawing. For large word-cloud images,
        using scale instead of larger canvas size is significantly faster, but
        might lead to a coarser fit for the words.

    min_font_size : int (default=4)
        Smallest font size to use. Will stop when there is no more room in this
        size.

    font_step : int (default=1)
        Step size for the font. font_step > 1 might speed up computation but
        give a worse fit.

    max_words : number (default=200)
        The maximum number of words.

    stopwords : set of strings or None
        The words that will be eliminated. If None, the build-in STOPWORDS
        list will be used. Ignored if using generate_from_frequencies.

    background_color : color value (default="black")
        Background color for the word cloud image.

    max_font_size : int or None (default=None)
        Maximum font size for the largest word. If None, height of the image is
        used.

    mode : string (default="RGB")
        Transparent background will be generated when mode is "RGBA" and
        background_color is None.

    relative_scaling : float (default='auto')
        Importance of relative word frequencies for font-size.  With
        relative_scaling=0, only word-ranks are considered.  With
        relative_scaling=1, a word that is twice as frequent will have twice
        the size.  If you want to consider the word frequencies and not only
        their rank, relative_scaling around .5 often looks good.
        If 'auto' it will be set to 0.5 unless repeat is true, in which
        case it will be set to 0.

        .. versionchanged: 2.0
            Default is now 'auto'.

    color_func : callable, default=None
        Callable with parameters word, font_size, position, orientation,
        font_path, random_state that returns a PIL color for each word.
        Overwrites "colormap".
        See colormap for specifying a matplotlib colormap instead.
        To create a word cloud with a single color, use
        ``color_func=lambda *args, **kwargs: "white"``.
        The single color can also be specified using RGB code. For example
        ``color_func=lambda *args, **kwargs: (255,0,0)`` sets color to red.

    regexp : string or None (optional)
        Regular expression to split the input text into tokens in process_text.
        If None is specified, ``r"\w[\w']+"`` is used. Ignored if using
        generate_from_frequencies.

    collocations : bool, default=True
        Whether to include collocations (bigrams) of two words. Ignored if using
        generate_from_frequencies.


        .. versionadded: 2.0

    colormap : string or matplotlib colormap, default="viridis"
        Matplotlib colormap to randomly draw colors from for each word.
        Ignored if "color_func" is specified.

        .. versionadded: 2.0

    normalize_plurals : bool, default=True
        Whether to remove trailing 's' from words. If True and a word
        appears with and without a trailing 's', the one with trailing 's'
        is removed and its counts are added to the version without
        trailing 's' -- unless the word ends with 'ss'. Ignored if using
        generate_from_frequencies.

    repeat : bool, default=False
        Whether to repeat words and phrases until max_words or min_font_size
        is reached.

    include_numbers : bool, default=False
        Whether to include numbers as phrases or not.

    min_word_length : int, default=0
        Minimum number of letters a word must have to be included.

    collocation_threshold: int, default=30
        Bigrams must have a Dunning likelihood collocation score greater than this
        parameter to be counted as bigrams. Default of 30 is arbitrary.

        See Manning, C.D., Manning, C.D. and Schütze, H., 1999. Foundations of
        Statistical Natural Language Processing. MIT press, p. 162
        https://nlp.stanford.edu/fsnlp/promo/colloc.pdf#page=22

    Attributes
    ----------
    ``words_`` : dict of string to float
        Word tokens with associated frequency.

        .. versionchanged: 2.0
            ``words_`` is now a dictionary

    ``layout_`` : list of tuples ((string, float), int, (int, int), int, color))
        Encodes the fitted word cloud. For each word, it encodes the string, 
        normalized frequency, font size, position, orientation, and color.
        The frequencies are normalized by the most commonly occurring word.
        The color is in the format of 'rgb(R, G, B).'

    Notes
    -----
    Larger canvases make the code significantly slower. If you need a
    large word cloud, try a lower canvas size, and set the scale parameter.

    The algorithm might give more weight to the ranking of the words
    than their actual frequencies, depending on the ``max_font_size`` and the
    scaling heuristic.
    """

    def __init__(self, font_path=None, width=400, height=200, margin=2,
                 ranks_only=None, prefer_horizontal=.9, mask=None, scale=1,
                 color_func=None, max_words=200, min_font_size=4,
                 stopwords=None, random_state=None, background_color='black',
                 max_font_size=None, font_step=1, mode="RGB",
                 relative_scaling='auto', regexp=None, collocations=True,
                 colormap=None, normalize_plurals=True, contour_width=0,
                 contour_color='black', repeat=False,
                 include_numbers=False, min_word_length=0, collocation_threshold=30):
        if font_path is None:
            font_path = FONT_PATH
        if color_func is None and colormap is None:
            version = matplotlib.__version__
            if version[0] < "2" and version[2] < "5":
                colormap = "hsv"
            else:
                colormap = "viridis"
        self.colormap = colormap
        self.collocations = collocations
        self.font_path = font_path
        self.width = width
        self.height = height
        self.margin = margin
        self.prefer_horizontal = prefer_horizontal
        self.mask = mask
        self.contour_color = contour_color
        self.contour_width = contour_width
        self.scale = scale
        self.color_func = color_func or colormap_color_func(colormap)
        self.max_words = max_words
        self.stopwords = stopwords if stopwords is not None else STOPWORDS
        self.min_font_size = min_font_size
        self.font_step = font_step
        self.regexp = regexp
        if isinstance(random_state, int):
            random_state = Random(random_state)
        self.random_state = random_state
        self.background_color = background_color
        self.max_font_size = max_font_size
        self.mode = mode

        if relative_scaling == "auto":
            if repeat:
                relative_scaling = 0
            else:
                relative_scaling = .5

        if relative_scaling < 0 or relative_scaling > 1:
            raise ValueError("relative_scaling needs to be "
                             "between 0 and 1, got %f." % relative_scaling)
        self.relative_scaling = relative_scaling
        if ranks_only is not None:
            warnings.warn("ranks_only is deprecated and will be removed as"
                          " it had no effect. Look into relative_scaling.",
                          DeprecationWarning)
        self.normalize_plurals = normalize_plurals
        self.repeat = repeat
        self.include_numbers = include_numbers
        self.min_word_length = min_word_length
        self.collocation_threshold = collocation_threshold

        # Override the width and height if there is a mask
        if mask is not None:
            self.width = mask.shape[1]
            self.height = mask.shape[0]

    def fit_words(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Alias to generate_from_frequencies.

        Parameters
        ----------
        frequencies : dict from string to float
            A contains words and associated frequency.

        Returns
        -------
        self
        """
        return self.generate_from_frequencies(frequencies)

    def generate_from_frequencies(self, frequencies, max_font_size=None):  # noqa: C901
        """Create a word_cloud from words and frequencies.

        Parameters
        ----------
        frequencies : dict from string to float
            A contains words and associated frequency.

        max_font_size : int
            Use this font-size instead of self.max_font_size

        Returns
        -------
        self

        """
        # make sure frequencies are sorted and normalized
        frequencies = sorted(frequencies.items(), key=itemgetter(1), reverse=True)
        if len(frequencies) <= 0:
            raise ValueError("We need at least 1 word to plot a word cloud, "
                             "got %d." % len(frequencies))
        frequencies = frequencies[:self.max_words]

        # largest entry will be 1
        max_frequency = float(frequencies[0][1])

        frequencies = [(word, freq / max_frequency)
                       for word, freq in frequencies]

        if self.random_state is not None:
            random_state = self.random_state
        else:
            random_state = Random()

        if self.mask is not None:
            boolean_mask = self._get_bolean_mask(self.mask)
            width = self.mask.shape[1]
            height = self.mask.shape[0]
        else:
            boolean_mask = None
            height, width = self.height, self.width
        occupancy = IntegralOccupancyMap(height, width, boolean_mask)

        # create image
        img_grey = Image.new("L", (width, height))
        draw = ImageDraw.Draw(img_grey)
        img_array = np.asarray(img_grey)
        font_sizes, positions, orientations, colors = [], [], [], []

        last_freq = 1.

        if max_font_size is None:
            # if not provided use default font_size
            max_font_size = self.max_font_size

        if max_font_size is None:
            # figure out a good font size by trying to draw with
            # just the first two words
            if len(frequencies) == 1:
                # we only have one word. We make it big!
                font_size = self.height
            else:
                self.generate_from_frequencies(dict(frequencies[:2]),
                                               max_font_size=self.height)
                # find font sizes
                sizes = [x[1] for x in self.layout_]
                try:
                    font_size = int(2 * sizes[0] * sizes[1]
                                    / (sizes[0] + sizes[1]))
                # quick fix for if self.layout_ contains less than 2 values
                # on very small images it can be empty
                except IndexError:
                    try:
                        font_size = sizes[0]
                    except IndexError:
                        raise ValueError(
                            "Couldn't find space to draw. Either the Canvas size"
                            " is too small or too much of the image is masked "
                            "out.")
        else:
            font_size = max_font_size

        # we set self.words_ here because we called generate_from_frequencies
        # above... hurray for good design?
        self.words_ = dict(frequencies)

        if self.repeat and len(frequencies) < self.max_words:
            # pad frequencies with repeating words.
            times_extend = int(np.ceil(self.max_words / len(frequencies))) - 1
            # get smallest frequency
            frequencies_org = list(frequencies)
            downweight = frequencies[-1][1]
            for i in range(times_extend):
                frequencies.extend([(word, freq * downweight ** (i + 1))
                                    for word, freq in frequencies_org])

        # start drawing grey image
        for word, freq in frequencies:
            if freq == 0:
                continue
            # select the font size
            rs = self.relative_scaling
            if rs != 0:
                font_size = int(round((rs * (freq / float(last_freq))
                                       + (1 - rs)) * font_size))
            if random_state.random() < self.prefer_horizontal:
                orientation = None
            else:
                orientation = Image.ROTATE_90
            tried_other_orientation = False
            while True:
                # try to find a position
                font = ImageFont.truetype(self.font_path, font_size)
                # transpose font optionally
                transposed_font = ImageFont.TransposedFont(
                    font, orientation=orientation)
                # get size of resulting text
                box_size = draw.textsize(word, font=transposed_font)
                # find possible places using integral image:
                result = occupancy.sample_position(box_size[1] + self.margin,
                                                   box_size[0] + self.margin,
                                                   random_state)
                if result is not None or font_size < self.min_font_size:
                    # either we found a place or font-size went too small
                    break
                # if we didn't find a place, make font smaller
                # but first try to rotate!
                if not tried_other_orientation and self.prefer_horizontal < 1:
                    orientation = (Image.ROTATE_90 if orientation is None else
                                   Image.ROTATE_90)
                    tried_other_orientation = True
                else:
                    font_size -= self.font_step
                    orientation = None

            if font_size < self.min_font_size:
                # we were unable to draw any more
                break

            x, y = np.array(result) + self.margin // 2
            # actually draw the text
            draw.text((y, x), word, fill="white", font=transposed_font)
            positions.append((x, y))
            orientations.append(orientation)
            font_sizes.append(font_size)
            colors.append(self.color_func(word, font_size=font_size,
                                          position=(x, y),
                                          orientation=orientation,
                                          random_state=random_state,
                                          font_path=self.font_path))
            # recompute integral image
            if self.mask is None:
                img_array = np.asarray(img_grey)
            else:
                img_array = np.asarray(img_grey) + boolean_mask
            # recompute bottom right
            # the order of the cumsum's is important for speed ?!
            occupancy.update(img_array, x, y)
            last_freq = freq

        self.layout_ = list(zip(frequencies, font_sizes, positions,
                                orientations, colors))
        return self

    def process_text(self, text):
        """Splits a long text into words, eliminates the stopwords.

        Parameters
        ----------
        text : string
            The text to be processed.

        Returns
        -------
        words : dict (string, int)
            Word tokens with associated frequency.

        ..versionchanged:: 1.2.2
            Changed return type from list of tuples to dict.

        Notes
        -----
        There are better ways to do word tokenization, but I don't want to
        include all those things.
        """

        flags = (re.UNICODE if sys.version < '3' and type(text) is unicode  # noqa: F821
                 else 0)
        pattern = r"\w[\w']*" if self.min_word_length <= 1 else r"\w[\w']+"
        regexp = self.regexp if self.regexp is not None else pattern

        words = re.findall(regexp, text, flags)
        # remove 's
        words = [word[:-2] if word.lower().endswith("'s") else word
                 for word in words]
        # remove numbers
        if not self.include_numbers:
            words = [word for word in words if not word.isdigit()]
        # remove short words
        if self.min_word_length:
            words = [word for word in words if len(word) >= self.min_word_length]

        stopwords = set([i.lower() for i in self.stopwords])
        if self.collocations:
            word_counts = unigrams_and_bigrams(words, stopwords, self.normalize_plurals, self.collocation_threshold)
        else:
            # remove stopwords
            words = [word for word in words if word.lower() not in stopwords]
            word_counts, _ = process_tokens(words, self.normalize_plurals)

        return word_counts

    def generate_from_text(self, text):
        """Generate wordcloud from text.

        The input "text" is expected to be a natural text. If you pass a sorted
        list of words, words will appear in your output twice. To remove this
        duplication, set ``collocations=False``.

        Calls process_text and generate_from_frequencies.

        ..versionchanged:: 1.2.2
            Argument of generate_from_frequencies() is not return of
            process_text() any more.

        Returns
        -------
        self
        """
        words = self.process_text(text)
        self.generate_from_frequencies(words)
        return self

    def generate(self, text):
        """Generate wordcloud from text.

        The input "text" is expected to be a natural text. If you pass a sorted
        list of words, words will appear in your output twice. To remove this
        duplication, set ``collocations=False``.

        Alias to generate_from_text.

        Calls process_text and generate_from_frequencies.

        Returns
        -------
        self
        """
        return self.generate_from_text(text)

    def _check_generated(self):
        """Check if ``layout_`` was computed, otherwise raise error."""
        if not hasattr(self, "layout_"):
            raise ValueError("WordCloud has not been calculated, call generate"
                             " first.")

    def to_image(self):
        self._check_generated()
        if self.mask is not None:
            width = self.mask.shape[1]
            height = self.mask.shape[0]
        else:
            height, width = self.height, self.width

        img = Image.new(self.mode, (int(width * self.scale),
                                    int(height * self.scale)),
                        self.background_color)
        draw = ImageDraw.Draw(img)
        for (word, count), font_size, position, orientation, color in self.layout_:
            font = ImageFont.truetype(self.font_path,
                                      int(font_size * self.scale))
            transposed_font = ImageFont.TransposedFont(
                font, orientation=orientation)
            pos = (int(position[1] * self.scale),
                   int(position[0] * self.scale))
            draw.text(pos, word, fill=color, font=transposed_font)

        return self._draw_contour(img=img)

    def recolor(self, random_state=None, color_func=None, colormap=None):
        """Recolor existing layout.

        Applying a new coloring is much faster than generating the whole
        wordcloud.

        Parameters
        ----------
        random_state : RandomState, int, or None, default=None
            If not None, a fixed random state is used. If an int is given, this
            is used as seed for a random.Random state.

        color_func : function or None, default=None
            Function to generate new color from word count, font size, position
            and orientation.  If None, self.color_func is used.

        colormap : string or matplotlib colormap, default=None
            Use this colormap to generate new colors. Ignored if color_func
            is specified. If None, self.color_func (or self.color_map) is used.

        Returns
        -------
        self
        """
        if isinstance(random_state, int):
            random_state = Random(random_state)
        self._check_generated()

        if color_func is None:
            if colormap is None:
                color_func = self.color_func
            else:
                color_func = colormap_color_func(colormap)
        self.layout_ = [(word_freq, font_size, position, orientation,
                         color_func(word=word_freq[0], font_size=font_size,
                                    position=position, orientation=orientation,
                                    random_state=random_state,
                                    font_path=self.font_path))
                        for word_freq, font_size, position, orientation, _
                        in self.layout_]
        return self

    def to_file(self, filename):
        """Export to image file.

        Parameters
        ----------
        filename : string
            Location to write to.

        Returns
        -------
        self
        """

        img = self.to_image()
        img.save(filename, optimize=True)
        return self

    def to_array(self):
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
        return np.array(self.to_image())

    def __array__(self):
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
        return self.to_array()

    def to_svg(self, embed_font=False, optimize_embedded_font=True, embed_image=False):
        """Export to SVG.

        Font is assumed to be available to the SVG reader. Otherwise, text
        coordinates may produce artifacts when rendered with replacement font.
        It is also possible to include a subset of the original font in WOFF
        format using ``embed_font`` (requires `fontTools`).

        Note that some renderers do not handle glyphs the same way, and may
        differ from ``to_image`` result. In particular, Complex Text Layout may
        not be supported. In this typesetting, the shape or positioning of a
        grapheme depends on its relation to other graphemes.

        Pillow, since version 4.2.0, supports CTL using ``libraqm``. However,
        due to dependencies, this feature is not always enabled. Hence, the
        same rendering differences may appear in ``to_image``. As this
        rasterized output is used to compute the layout, this also affects the
        layout generation. Use ``PIL.features.check`` to test availability of
        ``raqm``.

        Consistant rendering is therefore expected if both Pillow and the SVG
        renderer have the same support of CTL.

        Contour drawing is not supported.

        Parameters
        ----------
        embed_font : bool, default=False
            Whether to include font inside resulting SVG file.

        optimize_embedded_font : bool, default=True
            Whether to be aggressive when embedding a font, to reduce size. In
            particular, hinting tables are dropped, which may introduce slight
            changes to character shapes (w.r.t. `to_image` baseline).

        embed_image : bool, default=False
            Whether to include rasterized image inside resulting SVG file.
            Useful for debugging.

        Returns
        -------
        content : string
            Word cloud image as SVG string
        """

        # TODO should add option to specify URL for font (i.e. WOFF file)

        # Make sure layout is generated
        self._check_generated()

        # Get output size, in pixels
        if self.mask is not None:
            width = self.mask.shape[1]
            height = self.mask.shape[0]
        else:
            height, width = self.height, self.width

        # Get max font size
        if self.max_font_size is None:
            max_font_size = max(w[1] for w in self.layout_)
        else:
            max_font_size = self.max_font_size

        # Text buffer
        result = []

        # Get font information
        font = ImageFont.truetype(self.font_path, int(max_font_size * self.scale))
        raw_font_family, raw_font_style = font.getname()
        # TODO properly escape/quote this name?
        font_family = repr(raw_font_family)
        # TODO better support for uncommon font styles/weights?
        raw_font_style = raw_font_style.lower()
        if 'bold' in raw_font_style:
            font_weight = 'bold'
        else:
            font_weight = 'normal'
        if 'italic' in raw_font_style:
            font_style = 'italic'
        elif 'oblique' in raw_font_style:
            font_style = 'oblique'
        else:
            font_style = 'normal'

        # Add header
        result.append(
            '<svg'
            ' xmlns="http://www.w3.org/2000/svg"'
            ' width="{}"'
            ' height="{}"'
            '>'
            .format(
                width * self.scale,
                height * self.scale
            )
        )

        # Embed font, if requested
        if embed_font:

            # Import here, to avoid hard dependency on fonttools
            import fontTools
            import fontTools.subset

            # Subset options
            options = fontTools.subset.Options(

                # Small impact on character shapes, but reduce size a lot
                hinting=not optimize_embedded_font,

                # On small subsets, can improve size
                desubroutinize=optimize_embedded_font,

                # Try to be lenient
                ignore_missing_glyphs=True,
            )

            # Load and subset font
            ttf = fontTools.subset.load_font(self.font_path, options)
            subsetter = fontTools.subset.Subsetter(options)
            characters = {c for item in self.layout_ for c in item[0][0]}
            text = ''.join(characters)
            subsetter.populate(text=text)
            subsetter.subset(ttf)

            # Export as WOFF
            # TODO is there a better method, i.e. directly export to WOFF?
            buffer = io.BytesIO()
            ttf.saveXML(buffer)
            buffer.seek(0)
            woff = fontTools.ttLib.TTFont(flavor='woff')
            woff.importXML(buffer)

            # Create stylesheet with embedded font face
            buffer = io.BytesIO()
            woff.save(buffer)
            data = base64.b64encode(buffer.getbuffer()).decode('ascii')
            url = 'data:application/font-woff;charset=utf-8;base64,' + data
            result.append(
                '<style>'
                '@font-face{{'
                'font-family:{};'
                'font-weight:{};'
                'font-style:{};'
                'src:url("{}")format("woff");'
                '}}'
                '</style>'
                .format(
                    font_family,
                    font_weight,
                    font_style,
                    url
                )
            )

        # Select global style
        result.append(
            '<style>'
            'text{{'
            'font-family:{};'
            'font-weight:{};'
            'font-style:{};'
            '}}'
            '</style>'
            .format(
                font_family,
                font_weight,
                font_style
            )
        )

        # Add background
        if self.background_color is not None:
            result.append(
                '<rect'
                ' width="100%"'
                ' height="100%"'
                ' style="fill:{}"'
                '>'
                '</rect>'
                .format(self.background_color)
            )

        # Embed image, useful for debug purpose
        if embed_image:
            image = self.to_image()
            data = io.BytesIO()
            image.save(data, format='JPEG')
            data = base64.b64encode(data.getbuffer()).decode('ascii')
            result.append(
                '<image'
                ' width="100%"'
                ' height="100%"'
                ' href="data:image/jpg;base64,{}"'
                '/>'
                .format(data)
            )

        # For each word in layout
        for (word, count), font_size, (y, x), orientation, color in self.layout_:
            x *= self.scale
            y *= self.scale

            # Get text metrics
            font = ImageFont.truetype(self.font_path, int(font_size * self.scale))
            (size_x, size_y), (offset_x, offset_y) = font.font.getsize(word)
            ascent, descent = font.getmetrics()

            # Compute text bounding box
            min_x = -offset_x
            max_x = size_x - offset_x
            max_y = ascent - offset_y

            # Compute text attributes
            attributes = {}
            if orientation == Image.ROTATE_90:
                x += max_y
                y += max_x - min_x
                transform = 'translate({},{}) rotate(-90)'.format(x, y)
            else:
                x += min_x
                y += max_y
                transform = 'translate({},{})'.format(x, y)

            # Create node
            attributes = ' '.join('{}="{}"'.format(k, v) for k, v in attributes.items())
            result.append(
                '<text'
                ' transform="{}"'
                ' font-size="{}"'
                ' style="fill:{}"'
                '>'
                '{}'
                '</text>'
                .format(
                    transform,
                    font_size * self.scale,
                    color,
                    saxutils.escape(word)
                )
            )

        # TODO draw contour

        # Complete SVG file
        result.append('</svg>')
        return '\n'.join(result)

    def _get_bolean_mask(self, mask):
        """Cast to two dimensional boolean mask."""
        if mask.dtype.kind == 'f':
            warnings.warn("mask image should be unsigned byte between 0"
                          " and 255. Got a float array")
        if mask.ndim == 2:
            boolean_mask = mask == 255
        elif mask.ndim == 3:
            # if all channels are white, mask out
            boolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)
        else:
            raise ValueError("Got mask of invalid shape: %s" % str(mask.shape))
        return boolean_mask

    def _draw_contour(self, img):
        """Draw mask contour on a pillow image."""
        if self.mask is None or self.contour_width == 0:
            return img

        mask = self._get_bolean_mask(self.mask) * 255
        contour = Image.fromarray(mask.astype(np.uint8))
        contour = contour.resize(img.size)
        contour = contour.filter(ImageFilter.FIND_EDGES)
        contour = np.array(contour)

        # make sure borders are not drawn before changing width
        contour[[0, -1], :] = 0
        contour[:, [0, -1]] = 0

        # use gaussian to change width, divide by 10 to give more resolution
        radius = self.contour_width / 10
        contour = Image.fromarray(contour)
        contour = contour.filter(ImageFilter.GaussianBlur(radius=radius))
        contour = np.array(contour) > 0
        contour = np.dstack((contour, contour, contour))

        # color the contour
        ret = np.array(img) * np.invert(contour)
        if self.contour_color != 'black':
            color = Image.new(img.mode, img.size, self.contour_color)
            ret += np.array(color) * contour

        return Image.fromarray(ret)

到了这里,关于自然语言处理中的词云生成的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理实战9-大语言模型的训练与文本生成过程

    大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目9-大语言模型的训练与文本生成过程,详细步骤介绍。大语言模型的训练是通过深度学习技术实现的。首先,需要准备一个庞大的文本数据集作为训练样本,这些文本可以是网页、书籍、新闻等大量的非结构化文

    2024年02月07日
    浏览(54)
  • R语言对医学中的自然语言(NLP)进行机器学习处理(1)

    什么是自然语言(NLP),就是网络中的一些书面文本。对于医疗方面,例如医疗记录、病人反馈、医生业绩评估和社交媒体评论,可以成为帮助临床决策和提高质量的丰富数据来源。如互联网上有基于文本的数据(例如,对医疗保健提供者的社交媒体评论),这些数据我们可以直接下载

    2024年02月04日
    浏览(43)
  • 深度学习在自然语言处理中的十大应用领域

    🎉欢迎来到AIGC人工智能专栏~深度学习在自然语言处理中的十大应用领域 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:AIGC人工智能 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技术和水

    2024年02月11日
    浏览(57)
  • 【自然语言处理】【大模型】CodeGeeX:用于代码生成的多语言预训练模型

    CodeGeeX:用于代码生成的多语言预训练模型 《CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evaluations on HumanEval-X》 论文地址:https://arxiv.org/pdf/2303.17568.pdf 相关博客 【自然语言处理】【大模型】RWKV:基于RNN的LLM 【自然语言处理】【大模型】CodeGen:一个用于多轮程序合成

    2024年02月06日
    浏览(43)
  • 【自然语言处理】第3部分:识别文本中的个人身份信息

    做一个简单介绍, 酒架 年近48 ,有20多年IT工作经历,目前在一家500强做企业架构.因为工作需要,另外也因为兴趣涉猎比较广,为了自己学习建立了三个博客,分别是【全球IT瞭望】,【架构师酒馆】和【开发者开聊】,有更多的内容分享,谢谢大家收藏。 企业架构师需要

    2024年02月03日
    浏览(48)
  • TTS合成技术中的语音合成和人工智能和自然语言生成

    TTS合成技术中的语音合成和人工智能和自然语言生成是当前人工智能技术应用中的重要领域。本文旨在介绍TTS合成技术中的语音合成、人工智能和自然语言生成的概念和技术原理,并给出实现步骤和优化建议,旨在帮助读者更好地理解这个领域的技术细节和发展趋势。 TTS合成

    2024年02月07日
    浏览(54)
  • 自然语言处理NLP:一文了解NLP自然语言处理技术,NLP在生活中的应用,图导加深了解,NLP语料库,NLP开源工具

    目录 1.自然语言处理NLP 1.1 NLP中英对照(双份) 1.2 相关文章  2.NLP语料库

    2024年02月09日
    浏览(61)
  • 【自然语言处理】【深度学习】NLP中的N-gram理解

    N-gram是自然语言处理(NLP)中的一个概念,它描述的是文本中连续的n个项(通常是单词或字符)。这个概念主要用于语言建模和文本分析中。 具体来说: Unigram (1-gram): 包含一个单词的序列,例如句子中的单个单词。 Bigram (2-gram): 包含两个相邻单词的序列。例如,在句子 “

    2024年01月25日
    浏览(55)
  • 自然语言处理在智能客服和聊天机器人中的应用

    🎉欢迎来到AIGC人工智能专栏~自然语言处理在智能客服和聊天机器人中的应用 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:AIGC人工智能 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技术

    2024年02月10日
    浏览(54)
  • AI架构师必知必会系列:自然语言处理在智能客服中的应用

    作者:禅与计算机程序设计艺术 自然语言处理(Natural Language Processing,NLP)是计算机科学领域的一个重要方向,它利用计算机对文本、语音、图像等高维数据进行自动理解、分析和表达的能力。随着信息化和互联网的飞速发展,越来越多的人从事信息获取、咨询等业务,而智

    2024年02月06日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包