说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
稳健回归可以用在任何使用最小二乘回归的情况下。在拟合最小二乘回归时,我们可能会发现一些异常值或高杠杆数据点。已经确定这些数据点不是数据输入错误,也不是来自另一个群落。所以我们没有令人信服的理由将它们排除在分析之外。
稳健回归可能是一种好的策略,它是在将这些点完全从分析中排除;和包括所有数据点;以及在OLS回归中平等对待所有数据点之间的妥协。他可以个给每个样本一个权重,离群值权重低一些,正常值权重高一些,进行校正。
本项目通过RLM回归算法来构建稳健线性回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 |
变量名称 |
描述 |
1 |
rownames |
|
2 |
type |
|
3 |
income |
|
4 |
education |
|
5 |
prestige |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有5个变量,数据中无缺失值,共45条数据。
关键代码:
3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 变量直方图
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,变量主要集中在20~80之间。
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.构建稳健线性回归模型
主要使用RLM回归算法,用于目标回归。
5.1 构建模型
编号 |
模型名称 |
参数 |
1 |
稳健线性回归模型 |
默认参数 |
5.2 模型摘要信息
6.模型评估
6.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
模型名称 |
指标名称 |
指标值 |
测试集 | ||
稳健线性回归模型 |
R方 |
0.8251 |
均方误差 |
169.7509 |
|
可解释方差值 |
0.8252 |
|
平均绝对误差 |
9.4373 |
从上表可以看出,R方为0.8251,说明模型效果良好。
关键代码如下:
6.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致。
6.3 观测值的权重
观测值比较多,这里进行部分展示:
文章来源:https://www.toymoban.com/news/detail-814515.html
7.结论与展望
综上所述,本文采用了RLM回归算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。文章来源地址https://www.toymoban.com/news/detail-814515.html
# 本次机器学习项目实战所需的资料,项目资源如下:
# 项目说明:
# 获取方式一:
# 项目实战合集导航:
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
# 获取方式二:
链接:https://pan.baidu.com/s/1fcwNm3yh8ZuVpV1Nv7WfMQ
提取码:ij6e
到了这里,关于Python实现稳健线性回归模型(rlm算法)项目实战的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!