flink结合Yarn进行部署

这篇具有很好参考价值的文章主要介绍了flink结合Yarn进行部署。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 什么是Yarn模式部署Flink

独立(Standalone)模式由 Flink 自身提供资源,无需其他框架,这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。但我们知道,Flink 是大数据计算框架,不是资源调度框架,这并不是它的强项;所以还是应该让专业的框架做专业的事,和其他资源调度框架集成更靠谱。

而在目前大数据生态中,国内应用最为广泛的资源管理平台就是 YARN 了。本文主要介绍在强大的 YARN 平台上 Flink 是如何集成部署的。

利用Yarn可以实现Flink的三种集群模式,即:会话模式、单作业模式、应用模式,比较常用的就是利用Yarn部署Flink的会话模式,由于会话模式也已经实现了动态分配,所以没有了普通会话模式的局限了,因此会话模式是最常见的。


整体来说,YARN 上部署的过程是:

  1. 客户端把 Flink 应用提交给 Yarn 的 ResourceManager,
  2. Yarn 的 ResourceManager 会向 Yarn 的 NodeManager 申请容器。
  3. 在这些容器上,Flink 会部署 JobManager 和 TaskManager 的实例,从而启动集群。
  4. Flink 会根据运行在 JobManger 上的作业所需要的 Slot 数量动态分配 TaskManager 资源。

2. 环境准备

  • 在 Flink 1.11.0 版本之后,增加了很多重要新特性,其中就包括增加了对Hadoop3.0.0以及更高版本Hadoop的支持,不再提供“flink-shaded-hadoop-*”jar 包,而是通过配置环境变量完成与 YARN 集群的对接。

Flink 1.8.0的注意事项

  • Flink1.8.0 之前的版本,想要以 YARN 模式部署 Flink 任务时,需要 Flink 是有 Hadoop 支持的。
  • 从 Flink 1.8 版本开始,不再提供基于 Hadoop 编译的安装包,若需要 Hadoop 的环境支持,需要自行在官网下载 Hadoop 相关版本的组件 flink-shaded-hadoop-2-uber-2.7.5-10.0.jar,并将该组件上传至 Flink 的 lib 目录下。

在将 Flink 任务部署至 YARN 集群之前,需要确认集群是否安装有 Hadoop,保证 Hadoop 版本至少在 2.2 以上,并且集群中安装有 HDFS 服务。
具体配置步骤如下:
(1)配置环境变量,增加环境变量配置如下:

vim /etc/profile.d/my_env.sh

# 添加以下内容
HADOOP_HOME=/opt/module/hadoop-2.7.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

# 刷新环境变量使其生效
source /etc/profile.d/my_env.sh

这里必须保证设置了环境变量 HADOOP_CLASSPATH。
(2)启动 Hadoop 集群,包括 HDFS 和 YARN。

start-dfs.sh
start-yarn.sh

(3)修改 flink的配置文件,若在提交命令中不特定指明,这些配置将作为默认配置。

vim /app/apps/flink-1.13.0/conf/flink-conf.yaml

#修改以下配置
jobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 1728m
taskmanager.numberOfTaskSlots: 8
parallelism.default: 1

3. Yarn部署Flink会话模式

YARN 的会话模式与独立集群略有不同,需要首先申请一个 YARN 会话(YARN session)来启动 Flink 集群。具体步骤如下:

3.1 启动集群

(1)启动 hadoop 集群(HDFS, YARN)。
(2)执行脚本命令向 YARN 集群申请资源,开启一个 YARN 会话,启动 Flink 集群。

/app/apps/flink-1.13.0/bin/yarn-session.sh -d -nm test

可用参数解读:
-d:分离模式,后台运行YARN session。
-jm:(–jobManagerMemory):配置 JobManager 所需内存,默认单位 MB。
-nm:(–name):配置在 YARN UI 界面上显示的任务名。
-qu:(–queue):指定 YARN 队列名。
-tm:(–taskManager):配置每个 TaskManager 所使用内存。
注意:Flink1.11.0 版本不再使用-n 参数和-s 参数分别指定 TaskManager 数量和 slot 数量,YARN 会按照需求动态分配 TaskManager 和 slot。所以从这个意义上讲,YARN 的会话模式也不会把集群资源固定,同样是动态分配的。

YARN Session 启动之后会给出一个 web UI 地址以及一个 YARN application ID,如下所示,用户可以通过 web UI 或者命令行两种方式提交作业。
flink结合Yarn进行部署,Flink,flink,大数据

3.2 提交作业

(1)通过 Web UI 提交作业,这种方式比较简单,与上文所述 Standalone 部署模式基本相同。
(2)通过命令行提交作业:

  1. 将 Standalone 模式讲解中打包好的任务运行 JAR 包上传至集群
  2. 执行以下命令将该任务提交到已经开启的 Yarn-Session 中运行。
$ bin/flink run -c com.atguigu.wc.StreamWordCount FlinkTutorial-1.0-SNAPSHOT.jar

客户端可以自行确定 JobManager 的地址,也可以通过-m 或者-jobmanager 参数指定JobManager 的地址,JobManager 的地址在 YARN Session 的启动页面中可以找到。文章来源地址https://www.toymoban.com/news/detail-814526.html

  1. 任务提交成功后,可在 YARN 的 Web UI 界面查看运行情况。

到了这里,关于flink结合Yarn进行部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink--2、Flink部署(Yarn集群搭建下的会话模式部署、单作业模式部署、应用模式部署)

                           星光下的赶路人star的个人主页                        你必须赢过,才可以说不在乎输赢 Flink提交作业和执行任务,需要几个关键组件: 客户端(Client):代码由客户端获取并做转换,之后提交给

    2024年02月09日
    浏览(53)
  • flink on yarn集群部署模式

    介绍 YARN 上部署的过程是:客户端把 Flink 应用提交给 Yarn 的ResourceManager, Yarn 的 ResourceManager 会向 Yarn 的 NodeManager 申请容器。在这些容器上,Flink 会部署JobManager 和 TaskManager 的实例,从而启动集群。Flink 会根据运行在 JobManger 上的作业所需要的 Slot 数量动态分配TaskManager 资源。

    2024年01月23日
    浏览(43)
  • 206.Flink(一):flink概述,flink集群搭建,flink中执行任务,单节点、yarn运行模式,三种部署模式的具体实现

    Flink官网地址:Apache Flink® — Stateful Computations over Data Streams | Apache Flink Flink是一个 框架 和 分布式处理引擎 ,用于对 无界 和 有界 数据流进行 有状态计算 。 无界流(流): 有定义流的开始,没有定义结束。会无休止产生数据 无界流数据必须持续处理 有界流(批): 有定

    2024年02月11日
    浏览(49)
  • 大数据Flink(五十七):Yarn集群环境(生产推荐)

    文章目录 Yarn集群环境(生产推荐) 一、准备工作

    2024年02月13日
    浏览(44)
  • Flink on k8s容器日志生成原理及与Yarn部署时的日志生成模式对比

    最近需要将flink由原先部署到Yarn集群切换到kubernetes集群,在切换之后需要熟悉flink on k8s的运行模式。在使用过程中针对日志模块发现,在k8s的容器中,flink的系统日志只有jobmanager.log/taskmanager.log 两个,而当时在使用Yarn集群部署时,flink的日志会有多个,比如:jobmanager.log、jo

    2024年02月07日
    浏览(37)
  • Apache Hudi初探(三)(与flink的结合)--flink写hudi的操作(真正的写数据)

    在之前的文章中Apache Hudi初探(二)(与flink的结合)–flink写hudi的操作(JobManager端的提交操作) 有说到写hudi数据会涉及到 写hudi真实数据 以及 写hudi元数据 ,这篇文章来说一下具体的实现 这里的操作就是在 HoodieFlinkWriteClient.upsert 方法: initTable 初始化HoodieFlinkTable preWrite 在这里几乎没

    2024年02月10日
    浏览(36)
  • [Flink] Flink On Yarn(yarn-session.sh)启动错误

    在Flink上启动 yarn-session.sh时出现 The number of requested virtual cores for application master 1 exceeds the maximum number of virtual cores 0 available in the Yarn Cluster.错误。 版本说明: Hadoop: 3.3.4 Flink:1.17.1 在Flink On Yarn上启动 yarn-session.sh 时出现如下错误: 在yarn-site.xml文件中配置了所有可能相关的参

    2024年02月13日
    浏览(46)
  • Apache Flink连载(二十):Flink On Yarn运行 - Yarn Per-Job模式(弃用)

     🏡 个人主页:IT贫道-CSDN博客  🚩 私聊博主:私聊博主加WX好友,获取更多资料哦~  🔔 博主个人B栈地址:豹哥教你学编程的个人空间-豹哥教你学编程个人主页-哔哩哔哩视频 目录 1. 任务提交命令 2. 任务提交流程

    2024年01月20日
    浏览(41)
  • 基于Yarn搭建Flink

    1.1 Yarn 简介 Apache Hadoop YARN是一个资源提供程序,受到许多数据处理框架的欢迎。Flink服务被提交给 YARN 的 ResourceManager,后者再由 YARN NodeManager 管理的机器上生成容器。Flink 将其 JobManager 和 TaskManager 实例部署到此类容器中。 Flink 可以根据在 JobManager 上运行的作业所需的处理槽

    2024年02月04日
    浏览(43)
  • flink on yarn 中的flink-conf.yaml参数

    在 Flink on YARN 中, flink-conf.yaml 是 Flink 配置文件,用于配置 Flink 应用程序在 YARN 上的运行。通过修改 flink-conf.yaml 文件中的参数,你可以调整 Flink 集群的行为和性能。以下是一些常见的在 flink-conf.yaml 中设置的参数: yarn.application.name : 指定 Flink 应用程序在 YARN 上的名称。

    2024年02月12日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包