【头歌】——数据分析与实践-python-Pandas 初体验-Pandas数据取值与选择-Pandas进阶

这篇具有很好参考价值的文章主要介绍了【头歌】——数据分析与实践-python-Pandas 初体验-Pandas数据取值与选择-Pandas进阶。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Pandas 初体验

第1关 了解数据处理对象–Series

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import  pandas as pd
 
def create_series():
    '''
    返回值:
    series_a: 一个Series类型数据
    series_b: 一个Series类型数据
    dict_a:  一个字典类型数据
    '''
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    series_a=Series([1,2,5,7],index=['nu','li','xue','xi'])
    dict_a={'ting':1, 'shuo':2, 'du':32, 'xie':44}
    series_b=Series(dict_a)
    # ********** End **********#
 
    # 返回series_a,dict_a,series_b
    return series_a,dict_a,series_b
 

 
 

第2关 了解数据处理对象-DataFrame

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import  pandas as pd
 
def create_dataframe():
    '''
    返回值:
    df1: 一个DataFrame类型数据
    '''
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    dictionary = {'states':['0hio','0hio','0hio','Nevada','Nevada'],
         'years':[2000,2001,2002,2001,2002],
         'pops':[1.5,1.7,3.6,2.4,2.9]}
    df1 = DataFrame(dictionary)
    df1=DataFrame(dictionary,index=['one','two','three','four','five'])
    df1['new_add']=[7,4,5,8,2]
    # ********** End **********#
 
    #返回df1
    return df1

第3关 读取 CSV 格式数据

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import  pandas as pd
def read_csv_data():
    '''
    返回值:
    df1: 一个DataFrame类型数据
    length1: 一个int类型数据
    '''
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    df1 = pd.read_csv('test3/uk_rain_2014.csv', header=0)
    df1.columns = ['water_year','rain_octsep','outflow_octsep','rain_decfeb', 'outflow_decfeb', 'rain_junaug', 'outflow_junaug']
    length1=len(df1)
    # ********** End **********#
    #返回df1,length1
    return df1,length1
 

第4关 数据的基本操作——排序

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import  pandas as pd
def sort_gate():
    '''
    返回值:
    s2: 一个Series类型数据
    d2: 一个DataFrame类型数据
    '''
 
    # s1是Series类型数据,d1是DataFrame类型数据
    s1 = Series([4, 3, 7, 2, 8], index=['z', 'y', 'j', 'i', 'e'])
    d1 = DataFrame({'e': [4, 2, 6, 1], 'f': [0, 5, 4, 2]})
 
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    s2=s1.sort_index()
    d2=d1.sort_values(by='f')
    # ********** End **********#
 
    #返回s2,d2
    return s2,d2

第5关 数据的基本操作——删除

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import numpy as np
import  pandas as pd
 
def delete_data():
    '''
    返回值:
    s2: 一个Series类型数据
    d2: 一个DataFrame类型数据
    '''
 
    # s1是Series类型数据,d1是DataFrame类型数据
    s1 = Series([5, 2, 4, 1], index=['v', 'x', 'y', 'z'])
    d1=DataFrame(np.arange(9).reshape(3,3), columns=['xx','yy','zz'])
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    s2=s1.drop('z')
    d2=d1.drop(['yy'],axis=1)
    # ********** End **********#
 
    # 返回s2,d2
    return s2, d2
 
 
 
 

第6关 数据的基本操作——算术运算

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import numpy as np
import  pandas as pd
 
def add_way():
    '''
    返回值:
    df3: 一个DataFrame类型数据
    '''
 
    # df1,df2是DataFrame类型数据
    df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))
    df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))
    df3=df1.add(df2,fill_value=4)
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
 
 
    # ********** End **********#
 
    # 返回df3
    return df3

第7关 数据的基本操作——去重

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import  pandas as pd
 
def delete_duplicated():
    '''
    返回值:
    df2: 一个DataFrame类型数据
    '''
 
    # df1是DataFrame类型数据
    df1 = DataFrame({'k1': ['one'] * 3 + ['two'] * 4, 'k2': [1, 1, 2, 3, 3, 4, 4]})
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    df2=df1.drop_duplicates()
 
    # ********** End **********#
 
    # 返回df2
    return df2

第8关 数据重塑

# -*- coding: utf-8 -*-
from pandas import Series,DataFrame
import  pandas as pd
import numpy as np
def suoying():
    '''
    返回值:
    d1: 一个DataFrame类型数据
    '''
    #s1是Series类型数据
    s1=Series(np.random.randn(10),
           index=[['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd'], [1, 2, 3, 1, 2, 3, 1, 2, 2, 3]])
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    d1=s1.unstack()
 
    # ********** End **********#
 
    # 返回d1
    return d1
 
 
 
 
 
suoying()

Pandas数据取值与选择

第1关 Series数据选择

import pandas as pd
import numpy as np
 
arr = input()
dates = pd.date_range('20190101', periods=25) # 生成时间序列
df = pd.Series(eval(arr),index=dates)
#完成编程要求,并输出结果
#********** Begin **********#
df[pd.to_datetime('2019-01-29')]=320
a = df['2019-01-04'::]
print(a[a>100])
#********** End **********

第2关 DataFrame数据选择方法

import pandas as pd
 
 
def demo(raw_data,origin):
    df = pd.DataFrame(raw_data,index=origin)
    #转换成编程要求所示DataFrame, 并输出
    #********** Begin **********#
    print(df.loc[['Florida','Washington'],'deaths':].T)
    #********** End **********#
    return

Pandas 进阶

第1关 Pandas 分组聚合

import pandas as pd
import numpy as np
'''
返回最大值与最小值的和
'''
def sub(df):
    ######## Begin #######
    return df.max() - df.min()
    ######## End #######
def main():
    ######## Begin #######
    data = pd.read_csv("step1/drinks.csv")
    df = pd.DataFrame(data)
    mapping = {"wine_servings":sub,"beer_servings":np.sum}
    print(df.groupby("continent").agg(mapping))
    ######## End #######
if __name__ == '__main__':
    main()

第2关 Pandas 创建透视表和交叉表

#-*- coding: utf-8 -*-
import pandas as pd

#创建透视表
def create_pivottalbe(data):
    ###### Begin ######
    return data.pivot_table(index=["day"],values=["tip"],columns=["time"],margins=True,aggfunc=sum)
    ###### End ######

#创建交叉表
def create_crosstab(data):
    ###### Begin ######
    return pd.crosstab(index=[data.day],columns=[data.time],values=data.tip,aggfunc=sum ,margins=True)
    ###### End ######

def main():
    #读取csv文件数据并赋值给data
    ###### Begin ######
    data = pd.read_csv("step2/tip.csv")
    ###### End ######
    piv_result = create_pivottalbe(data)
    cro_result = create_crosstab(data)
    print("透视表:\n{}".format(piv_result))
    print("交叉表:\n{}".format(cro_result))

if __name__ == '__main__':
    main()

文章来源地址https://www.toymoban.com/news/detail-814646.html

到了这里,关于【头歌】——数据分析与实践-python-Pandas 初体验-Pandas数据取值与选择-Pandas进阶的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python-pandas:数据合并merge函数用法详解

    介绍一下数据分析中很常用的一个函数——merge,它能够进行高效的数据合并操作。先看一下语法格式及其初步解释: 生成的两个DataFrame对象如下: 1、参数left,right: 将df_d作为左侧的frame,df_e作为右侧的frame,则参数left=df_d,right=df_e; 2、参数how: 当参数how=\\\'left\\\':仅使用左

    2024年02月15日
    浏览(48)
  • Python数据分析-Pandas

    个人笔迹,建议不看 Series类型 DataFrame类型 是一个二维结构,类似于一张excel表 DateFrame只要求每列的数据类型相同就可以了 查看数据 读取数据及数据操作 行操作 条件选择 缺失值及异常值处理 判断缺失值: 填充缺失值: 删除缺失值 age count 2.000000 mean 1.500000 std 0.707107 min 1

    2024年02月10日
    浏览(61)
  • python-数据分析-pandas

    第一种:通过标量创建Series 第二种:通过列表创建Series 第三种:通过字典创建Series 第四种:通过ndarray创建Series values和index 索引和切片 第一种:通过一维列表构成的字典创建DataFrame 姓名 数学 语文 计算机 0 张三 87 54 34 1 李四 45 76 56 2 王五 34 55 77 3 赵六 98 90 87 姓名 数学 语文

    2023年04月23日
    浏览(62)
  • python大数据作业-客户价值分析-实训头歌

    一、实验目的与要求 1、掌握使用numpy和pandas库处理数据的基本方法。 2、掌握使用RFM分析模型对客户信息进行特征提取的基本方法。 3、掌握对特征数据进行标准化处理的基本方法。 4、掌握使用Sklearn库对K-Means聚类算法的实现及其评价方法。 5、掌握使用matplotlib结合pandas库对

    2023年04月17日
    浏览(38)
  • 头歌平台python数据分析——(9)Matplotlib图形配置

    ,根据输入数据绘制热成像图并隐藏坐标轴,具体要求如下: 图形的figsize为(10, 10); 图形保存到Task1/img/T1.png。 根据函数参数file_name读取文件,统计每年births的总和并作折线图,为最高/最低出生数年份设置注释,具体要求如下: 对数据进行去空值处理; 注释文字的坐标位置

    2024年02月10日
    浏览(158)
  • 实战演练Python数据分析[pandas]

    本篇文章出自于《利用Python进行数据分析》示例数据 请结合提供的示例数据,分析代码的功能,并进行数据分析与可视化拓展。本篇文章通过四个例子,通过MoviesLens数据集、美国1880-2010年的婴儿名字、美国农业部视频数据库、2012年联邦选举委员会数据库来进行着重讲解。

    2024年02月15日
    浏览(48)
  • 【Python练习】数据分析库Pandas

    1. 了解Serie

    2024年02月09日
    浏览(59)
  • python数据分析之Pandas库(一)

    Pandas有两种常用的数据结构: Series (一维数据)与 DataFrame(二维数据)。 Series 是一种类似于 一维数组 的对象,能保存不同数据类型。 DataFrame 是一个 二维的表格型 的数据结构。 1、初始化 使用一位列表初始化Series 2、索引[数据的行标签]、切片 1、初始化 2、查看数据 1、

    2024年02月09日
    浏览(49)
  • 【Python】数据分析+数据挖掘——探索Pandas中的数据筛选

    当涉及数据处理和分析时,Pandas是Python编程语言中最强大、灵活且广泛使用的工具之一。Pandas提供了丰富的功能和方法,使得数据的选择、筛选和处理变得简单而高效。在本博客中,我们将重点介绍Pandas中数据筛选的关键知识点,包括条件索引、逻辑操作符、 query() 方法以及

    2024年02月15日
    浏览(58)
  • Python数据分析之Pandas核心使用进阶

    在Pandas中,有两种常见的方法可以进行DataFrame的行级遍历:使用 iterrows() 和使用 iteritems() 。 使用 iterrows() 方法: iterrows() 方法返回一个迭代器,可以按行遍历DataFrame。每次迭代返回一个包含行索引和该行数据的元组。 输出结果为: 在上面的例子中,我们使用 iterrows() 方法遍

    2024年02月11日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包