给定一个二维矩阵 matrix
,以下类型的多个请求:
计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1)
,右下角为 (row2, col2)
。
实现 NumMatrix
类:
NumMatrix(int[][] matrix)
给定整数矩阵 matrix
进行初始化
int sumRegion(int row1, int col1, int row2, int col2)
返回左上角 (row1, col1)
、右下角 (row2, col2)
的子矩阵的元素总和。
示例 1:
输入: ["NumMatrix","sumRegion","sumRegion","sumRegion"] [[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]] 输出: [null, 8, 11, 12] 解释: NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]); numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和) numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和) numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
最多调用 104
次 sumRegion
方法
解题思路:(前缀和思路)
对于一个二维矩阵,可能由于输入不同的坐标而反复求不同子矩阵的数字之和,所以需要尽可能快的实现子矩阵的数字求和
用前缀和的方式可快速求子矩阵的数字和
为了代码实现上方便,特意在最左边一列,最上边一列空出来
先根据原矩阵,求出前缀和矩阵,然后通过观察得知公式
sum[row2 + 1][col2 + 1] - sum[row1][col2 + 1] - sum[row2 + 1][col1] + sum[row1][col1]
class NumMatrix {
int[][] sums;
public NumMatrix(int[][] matrix) {
int m = matrix.length;
if (m > 0) {
int n = matrix[0].length;
sums = new int[m + 1][n + 1];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
sums[i + 1][j + 1] = sums[i][j + 1] + sums[i + 1][j] - sums[i][j] + matrix[i][j];
}
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2 + 1][col2 + 1] - sums[row1][col2 + 1] - sums[row2 + 1][col1] + sums[row1][col1];
}
}
文章来源:https://www.toymoban.com/news/detail-814666.html
文章来源地址https://www.toymoban.com/news/detail-814666.html
到了这里,关于leetcode 013二维区域和检索---矩阵不可变的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!