STM32存储左右互搏 SPI总线读写FRAM MB85RS2M

这篇具有很好参考价值的文章主要介绍了STM32存储左右互搏 SPI总线读写FRAM MB85RS2M。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

STM32存储左右互搏 SPI总线读写FRAM MB85RS2M

在中低容量存储领域,除了FLASH的使用,,还有铁电存储器FRAM的使用,相对于FLASH,FRAM写操作时不需要预擦除,所以执行写操作时可以达到更高的速度,其主要优点为没有FLASH持续写操作跨页地址需要变换的要求。相比于SRAM则具有非易失性, 因此价格方面会高一些。MB85RS2M是256K Byte(2M bit)的FRAM,能够按字节进行写入且没有写入等待时间。其管脚功能兼容FLASH:spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
这里介绍STM32访问FRAM MB85RS2M的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 SPI硬件电路实现读写操作,通过USB虚拟串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
配置硬件SPI接口:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
增加配置PA4作为SPI软件代码控制输出的片选管脚
并增加PA2和PA3连接到/WP和/HOLD管脚,并保持输出高电平:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
配置USB作为通讯口:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte
保存并生成初始工程代码:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte

STM32工程代码

USB虚拟串口的使用参考:STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

这里的测试逻辑实现为:当USB虚拟串口收到任何数据时,STM32在内部对MB85RS2M写入从USB虚拟串口收到的数据,然后再回读出来,通过USB虚拟串口发送出去。

USB接收数据的代码:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	extern uint8_t cmd;
	extern uint8_t * RData;
	extern uint32_t RDataLen;

	RData = Buf;
	RDataLen = *Len;
	cmd = 1;

  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
  return (USBD_OK);
  /* USER CODE END 6 */
}

新建MB85RS2M访问函数头文件MB85RS2M.h

#ifndef INC_MB85RS2M_H_
#define INC_MB85RS2M_H_
#include "main.h"

/*To define operation code*/
#define WREN 0x06    //Set Write Enable Latch
#define WRDI 0x04    //Reset Write Enable Latch
#define RDSR 0x05    //Read Status Register
#define WRSR 0x01    //Write Status Register
#define READ 0x03    //Read Memory Code
#define WRITE 0x02   //Write Memory Code
#define RDID 0x9F    //Read Device ID

#define MB85RS2M_ID 0x03487F04

uint32_t MB85RS2M_ReadID(void);
uint8_t MB85RS2M_Init(void);
void MB85RS2M_Set_Write_Enable_Latch(void);
void MB85RS2M_Reset_Write_Enable_Latch(void);
void MB85RS2M_Write_Status_Register(uint8_t SRV);
uint8_t MB85RS2M_Read_Status_Register(void);
void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len);
void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len);

#endif /* INC_MB85RS2M_H_ */

新建MB85RS16访问函数源文件MB85RS2M.c

//Written by Pegasus Yu in 2023

#include "MB85RS2M.h"
#include <string.h>

#define SPI1_CS_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET)
#define SPI1_CS_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET)
extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);


uint32_t MB85RS2M_ReadID(void)
{
	uint8_t ftd[5];
	uint8_t frd[5];
	uint8_t Manufacturer_ID;
	uint8_t Continuation_Code;
	uint8_t Product_ID_L;
	uint8_t Product_ID_H;

	ftd[0]=RDID;


	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, ftd, frd, 5, 0xFFFFFFFF);

	SPI1_CS_H;

	Manufacturer_ID = frd[1];
	Continuation_Code = frd[2];
	Product_ID_L = frd[3];
	Product_ID_H = frd[4];

	return ((Product_ID_H<<24)|(Product_ID_L<<16)|(Continuation_Code<<8)|(Manufacturer_ID));
}

uint8_t MB85RS2M_Init(void)
{
	uint8_t st = 0;

	for(uint8_t i=0; i<4; i++)
	{
		if(MB85RS2M_ReadID()==MB85RS2M_ID)
		{
			st = 1;
			break;
		}

	}

	return st;

}


/*
 * WEL is reset after the following operations which means every write operation must follow once WREN operation MB85RS2M_Set_Write_Enable_Latch().
 * After power ON.
 * After WRDI command recognition.
 * At the rising edge of CS after WRSR command recognition.
 * At the rising edge of CS after WRITE command recognition.
 */
void MB85RS2M_Set_Write_Enable_Latch(void)
{
    uint8_t cmd = WREN;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS2M_Reset_Write_Enable_Latch(void)
{
    uint8_t cmd = WRDI;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS2M_Write_Status_Register(uint8_t SRV)
{
    uint8_t data[2];
    data[0] = WRSR;
    data[1] = SRV;

    MB85RS2M_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;
}

uint8_t MB85RS2M_Read_Status_Register(void)
{
    uint8_t cmd[2];
    uint8_t data[2];
    uint8_t SRV;

    cmd[0] = RDSR;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;

	SRV = data[1];
	return SRV;

}

/*
 * wd: data buffer pointer
 * addr: address to operate for MB85RS2M
 * len: data length to be written
 */

void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len)
{
    uint8_t data[len+4];
    data[0] = WRITE;
    data[1] = (uint8_t)(addr>>16);
    data[2] = (uint8_t)(addr>>8);
    data[3] = (uint8_t)addr;

    memcpy(data+4, wd, len);

    MB85RS2M_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, len+4, 0xFFFFFFFF);

	SPI1_CS_H;
}


/*
 * rd: data buffer pointer
 * addr: address to operate for MB85RS2M
 * len: data length to be written
 */

void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len)
{
    uint8_t cmd[len+4];
    uint8_t data[len+4];
    cmd[0] = READ;
    cmd[1] = (uint8_t)(addr>>16);
    cmd[2] = (uint8_t)(addr>>8);
    cmd[3] = (uint8_t)addr;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data , len+4, 0xFFFFFFFF);

	SPI1_CS_H;

	memcpy(rd, data+4, len);
}

完整的main.c主文件代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include "MB85RS2M.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t * RData;        //USB rx data pointer
uint32_t RDataLen;      //USB rx data length
uint8_t * TData;        //USB tx data pointer
uint32_t TDataLen;      //USB tx data length


uint8_t MB85RS2M_Status = 0;
uint16_t MB85RS2M_OPADDR = 0;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USB_DEVICE_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  MB85RS2M_Status = MB85RS2M_Init();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	if(cmd==1)
	{
		cmd = 0;

		if(MB85RS2M_Status==1)
		{
			MB85RS2M_OPADDR = 0; //Set operation address here

			MB85RS2M_Write_Memory(RData, MB85RS2M_OPADDR, RDataLen);

	        PY_Delay_us_t(2);

			uint8_t rd[RDataLen];
			MB85RS2M_Read_Memory(rd, MB85RS2M_OPADDR, RDataLen);

			TData = rd;
			TDataLen = RDataLen;
			CDC_Transmit_FS(TData, TDataLen);

		}
		else
		{
			CDC_Transmit_FS("MB85RS2M ID read failure!\r\n", strlen("MB85RS2M ID read failure!\r\n"));
		}

	}

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pins : PA2 PA3 PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32范例测试

上述范例的测试效果如下:
spi读写fram,xram,,STM32,STM32博客,SPI,FRAM,MB85RS,MB85RS2M,2Mbit,128Kbyte

STM32例程下载

STM32F401CCU6 I2C总线读写FRAM MB85RS2M例程

–End–文章来源地址https://www.toymoban.com/news/detail-814988.html

到了这里,关于STM32存储左右互搏 SPI总线读写FRAM MB85RS2M的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32存储左右互搏 I2C总线FATS读写EEPROM ZD24C1MA

    在较低容量存储领域,EEPROM是常用的存储介质,可以通过直接或者文件操作方式进行读写。不同容量的EEPROM的地址对应位数不同,在发送字节的格式上有所区别。EEPROM是非快速访问存储,因为EEPROM按页进行组织,在连续操作模式,当跨页时访问地址不是跳到下一页到开始,而

    2024年02月12日
    浏览(65)
  • 2023版 STM32实战11 SPI总线读写W25Q

    英文全称:Serial peripheral Interface 串行外设接口 -1- 串行(逐bit传输) -2- 同步(共用时钟线) -3- 全双工(收发可同时进行) -4- 通信只能由主机发起(一主,多从机) -1- CS片选一般配置为软件控制 -2- 片选低电平有效,从器件CS引脚可直接连接GND -3- 从机不能主动给主机发数据 -4- 主机想要

    2024年02月08日
    浏览(35)
  • 【STM32学习】——SPI通信协议&SPI时序&W25Q64存储芯片&软件SPI读写

    目录 前言 一、SPI通信协议 1.概述​ 2.硬件电路  3.移位示意图 二、SPI时序 1.时序基本单元 2.完整时序波形 三、W25Q64存储芯片 1.芯片简介  2.硬件电路引脚定义  3.芯片框图 4.Flash操作注意事项 四、软件SPI读写W25Q64 五、SPI通信外设 总结 声明:学习笔记来自江科大自化协B站教

    2024年02月09日
    浏览(58)
  • STM32-SPI通信(W25Q64芯片简介,使用SPI读写W25Q64存储器芯片)

    ​  SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)。 ​SPI通信具有以下特点: 同步,全双工; 支持总线挂载多设备(SPI仅支持一主多从); 在不

    2024年02月08日
    浏览(45)
  • 零死角玩转stm32中级篇3-SPI总线

    一.基础知识 1.什么是SPI SPI(Serial Peripheral Interface,串行外设接口)是一种同步的串行通信协议,它被用于在微控制器、存储器芯片、传感器和其他外围设备之间传输数据。SPI通常由四个线组成:时钟线(SCK)、主设备输出/从设备输入(MOSI)、从设备输出/主设备输入(MISO)

    2024年02月06日
    浏览(42)
  • STM32_SPI总线驱动OLED详细原理讲解

    目录 13.1.1 SPI总线介绍 SPI(Serial Peripheral interface):是由Motorola公司开发的串行外围设备接口,是一种高速的,全双工,同步的通信总线。主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器等器件。 UART:异步串行全双工 SPI:同步串行全双工

    2024年01月20日
    浏览(40)
  • arm学习stm32之spi总线数码管倒计时

    由于时间没有用时间计时器操作,有些误差,后续有空会翻新计时器版本 main.c spi.c spi.h

    2024年02月13日
    浏览(44)
  • stm32读写SD卡(SPI模式)

    目录 一、SD卡简介 二、源码下载 三、移植条件 1、芯片参数 2、硬件连接 四、驱动代码 1、依赖宏如下 2、驱动代码实现 3、测试代码 4、运行截图 SD卡有SD驱动模式和SPI驱动模式,本例中使用SPI模式驱动SD卡。 https://download.csdn.net/download/qq_30095023/88014550 1、芯片参数 芯片类型:

    2024年02月07日
    浏览(42)
  • arm学习stm32之spi总线数码管倒计时,裸机开发,soc

    由于时间没有用时间计时器操作,有些误差,后续有空会翻新计时器版本 main.c spi.c spi.h

    2024年02月16日
    浏览(45)
  • STM32开发_利用SPI协议读写SD卡、介绍SD卡SPI时序

    目录 一、​  SD卡引脚接口功能介绍 1.1 SD卡引脚接口图 1.2 SPI方式驱动SD卡介绍 1.3 开发板接口定义 二、MMC卡、SD卡介绍 2.1 SD卡和MMC两者间区别 2.2 SD卡版本说明 2.3 SD卡常用的指令表 三、向SD卡发送命令的步骤介绍(SendSDCardCmd) 3.1 取消选中SD卡(SDCardCancelCS) 3.2 选中SD卡(SDCardSele

    2024年02月16日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包