Opencv轮廓检测运用与理解

这篇具有很好参考价值的文章主要介绍了Opencv轮廓检测运用与理解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

引入

基本理解

加深理解

①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓

②我们还可以用一个矩形把我们的轮廓给框出来

③计算轮廓的周长和面积


引入

顾名思义,就是把我们图片的轮廓全部都描边出来

也就是我们在日常生活中面部识别的时候会有一个框,那玩意就是

基本理解

我们还是通过例子来基本的理解以下opencv是如何实现轮廓识别的


这是我们的原图像  test.png

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉


实现代码

cv2.findContours(img,mode,method)

img:轮廓检索模式:

  • 传入的图像

mode:轮廓检索模式:

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;(一般只用这种)

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,输出完整的轮廓(一般用这种)
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。(即只保留轮廓点)

返回的值:

contours
获取到的轮廓点
hierarchy
   层数(可以不用管)

cv2.drawContours(图像,轮廓,轮廓索引,颜色模式,线条厚度)

注意:会影响我们传入的原图像,记得定义一个临时图像传入进去

import cv2

img = cv2.imread("test.png")
img = cv2.resize(img,(500,400))
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 阈值处理,让图像颜色只有2种颜色  提高准确性
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 进行轮廓处理
# cv2.findContours返回两个值
# contours 轮廓点(是个列表)
# hierarchy 层数(用不到)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 轮廓描边后会影响原图,所以我们定义一个临时的图片
temp_img = img.copy()
# 进行轮廓描边
# contours 获取到的轮廓点
# -1 表示的画出所有的轮廓,eg:0就表示我们列表中第一个轮廓
# (0, 0, 255) 表示我们用红色线条来绘画 bgr
# 2 表示线条粗细
res = cv2.drawContours(temp_img, contours, -1, (0, 0, 255), 2)

cv2.imshow("res",res)
cv2.waitKey()
cv2.destroyAllWindows()

结果:

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉


加深理解

除了最基本的用法,我们还有很多扩充的用法

①比如我们可以获取我们的第一个轮廓,只展示第一个轮廓

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# 取出列表中第一个
con = contours[0]
# 绘制
res = cv2.drawContours(temp_img, con, -1, (0, 0, 255), 2)
# 展示
cv2.imshow("res",res)

我们可以看到,只出现了我们列表第一个的轮廓

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉


②我们还可以用一个矩形把我们的轮廓给框出来

原图像:

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉

实现代码:

img = cv2.imread('contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

# 返回我们要绘制的矩形特征
x,y,w,h = cv2.boundingRect(cnt)
# 绘制矩形
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

x,y,w,h = cv2.boundingRect(cnt)

返回我们的x和y的坐标  以及宽和高

cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

绘制我们的矩形

(x,y)表示我们的开始坐标

(x+w,y+h)表示我们的边

最后会自动把对边连接起来形成一个矩形

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉

结果:

Opencv轮廓检测运用与理解,opencv,人工智能,计算机视觉


③计算轮廓的周长和面积

这个很简单,就是调用两个函数就能实现对应得功能文章来源地址https://www.toymoban.com/news/detail-815122.html

cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)

到了这里,关于Opencv轮廓检测运用与理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • OpenCV图像处理——轮廓检测

    OpenCV图像处理——轮廓检测

    2024年02月13日
    浏览(9)
  • 基于OpenCV的轮廓检测(1)

    基于OpenCV的轮廓检测(1)

    理解什么叫做轮廓 学习如何寻找轮廓以及可视化轮廓 找出轮廓的不同特征,如面积、周长、质心、边框等 将看到许多与轮廓相关的函数。 轮廓可以简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或者亮度。轮廓是形状分析和目标检测与识别的有效工具。

    2024年02月09日
    浏览(10)
  • opencv 轮廓检测 findContours drawContours
  • 【Python】OpenCV-图像轮廓检测初学

    【Python】OpenCV-图像轮廓检测初学

    在图像处理领域中,轮廓检测是一项重要的任务,用于寻找并标定图像中的物体边缘。本文将介绍如何使用OpenCV库进行图像轮廓检测,并展示一个简单的示例代码。代码中的注释将详细解释每一步的操作。 图像轮廓检测是图像处理中的一项关键技术,可用于检测物体的形状、

    2024年02月21日
    浏览(8)
  • OpenCV快速入门:目标检测——轮廓检测、轮廓的距、点集拟合和二维码检测

    OpenCV快速入门:目标检测——轮廓检测、轮廓的距、点集拟合和二维码检测

    在当今数字化时代,计算机视觉的崛起使得目标检测成为科技领域中的一项关键技术。本文将带您快速入门OpenCV中的目标检测,深入探讨轮廓检测、轮廓的距、点集拟合以及二维码检测等核心概念。 OpenCV,作为一种强大的开源计算机视觉库,为开发者提供了丰富的工具和算法

    2024年01月16日
    浏览(12)
  • opencv(七)Canny边缘检测和图像轮廓检测

    opencv(七)Canny边缘检测和图像轮廓检测

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 1、检测步骤 1)使用高斯滤波器,以平滑图像,滤掉噪声。 2)计算图像中每个像素点的梯度强度和方向 3)应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应 4)应用双阈值(

    2024年02月04日
    浏览(9)
  • OpenCV基础之边缘检测与轮廓描绘

    OpenCV基础之边缘检测与轮廓描绘

    边缘检测:主要是通过一些手段检测数字图像中明暗变化剧烈(即梯度变化比较大)像素点,偏向于图像中像素点的变化。 轮廓检测:指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程。主

    2024年02月06日
    浏览(8)
  • 如何在OpenCV中实现图像的边缘检测和轮廓提取?opencv教程

    如何在OpenCV中实现图像的边缘检测和轮廓提取?opencv教程

    在OpenCV中,可以使用边缘检测算法和轮廓提取函数来实现图像的边缘检测和轮廓提取。以下是一种常用的方法: 边缘检测: 在OpenCV中,常用的边缘检测算法包括Canny边缘检测和Sobel算子。 Canny边缘检测: Canny边缘检测是一种广泛使用的边缘检测算法,它能够有效地检测出图像

    2024年02月15日
    浏览(12)
  • openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读

    openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读

    打印一个图片可以做出一个函数: 前面我们计算了这个图片的轮廓:  它的轮廓信息保存在了contours中,取出第一个轮廓,计算相关参数: 打印结果: 8500.5  437.9482651948929 这是分别求出了周长和面积,这里的True表示的是否是闭合的。    如图,第一个图是原图,如果将它的

    2024年02月10日
    浏览(7)
  • opencv中轮廓检测以及轮廓近似的分析——轮廓近似原理,所有代码开源,所有函数的参数。

    opencv中轮廓检测以及轮廓近似的分析——轮廓近似原理,所有代码开源,所有函数的参数。

            对于轮廓检测的步骤可简述为:读取图像 - 图像二值化 - 找出轮廓 - 在原图像上画出轮廓这么四个步骤。 下面先是讲每个步骤的代码,步骤后会写关键步骤的原理。         首先是读取图像,在本次实验中是将获取到的轮廓画在原图像上所以需要获取原图像和

    2024年02月20日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包