【机器学习300问】12、为什么要进行特征归一化?

这篇具有很好参考价值的文章主要介绍了【机器学习300问】12、为什么要进行特征归一化?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        当线性回归模型的特征量变多之后,会出现不同的特征量,然而对于那些同是数值型的特征量为什么要做归一化处理呢?

一、为了消除数据特征之间的量纲影响

        使得不同指标之间具有可比性。例如,分析一个人的身高和体重对健康的影响,如果使用米(m)和于克(kg)作为单位,那么身高特征会在 1.6m ~ 1.8m的数值范围内,体重特征会在50~ 100kg 的范围内,分析出来的结果显然会倾向于数值差别比较大的体重特征。想要得到更为准确的结果,就需要进行特征归一化(Normalization)处理,使各指标处于同一个数值量级,以便进行分析。

二、为了让模型训练更迅速

        归一化后的特征在数值上更接近,这可以使得模型训练过程中的梯度下降步长更加稳定,同时避免了某些特征因数值过大而在梯度下降过程中占据主导地位。

【机器学习300问】12、为什么要进行特征归一化?,【机器学习】,机器学习,人工智能,python
特征归一化对梯度下降有影响

三、为了使特征间的权重更公平

        在一些算法中,比如逻辑回归,如果不进行归一化,那么特征的重要性可能会被特征的尺度所影响。即那些取值范围较大的特征可能会被模型认为是更重要的特征,从而导致在计算距离时,尺度较大的特征将会导致距离主要由它来决定,这可能会掩盖掉其他特征的信息,降低模型的预测精度。

四、归一化最常用的两种方法

        对数值型特征做归一化处理可以将所有特征都统一到一个大致相同的区间内。

(1)线性函数归一化(Min-Max Scaling)

        这是最常见的归一化形式,也被称为离差标准化,是把原始数据线性变换到 [0, 1] 区间。实现对数据的等比缩放。归一化公式如下

        

        其中的X是原始数据,Xmax是其中的最大值,Xmin是其中的最小值。

(2)零均值归一化(Z-Score Normalization)

        它会将原始数据规范化为标准正态分布(均值为0,标准差为1),适合于原始数据的分布不满足正太分布的情况。其归一化公式如下

        其中的是均值,是标准差。经过Z-Score Normalization,数据会被映射到一个均值为0,标准差为1的分布上。

(3)两种归一化的对比

        这两种归一化方法在不同的场景下有不同的优势:文章来源地址https://www.toymoban.com/news/detail-815177.html

  • Min-Max Scaling 更适合于特征的最大值和最小值有明确意义且已知的情况下,或者是输入数据的上下界很重要时。
  • Z-Score Normalization 对于那些期望符合正态分布的模型或算法更有利,同时它不会改变数据的分布形状,而是将其调整到标准正态分布的形式,这有助于消除由于特征度量单位不同造成的偏差,并突出数据的内在结构。

到了这里,关于【机器学习300问】12、为什么要进行特征归一化?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习强基计划10-1:为什么需要集成学习?核心原理是什么?

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月06日
    浏览(68)
  • 为什么特征值的重数大于等于线性无关特征向量的个数

    关系就是,特征值的重数 ≥ 该特征值的线性无关向量的个数 ≥ 1 量化关系有 特征值的重数,称为 代数重数 ,等于Jordan矩阵中特征值为λ的Jordan块的阶数之和 特征向量的个数,称为 几何重数 ,等于Jordan矩阵中特征值为λ的Jordan块的个数 证明 先说结论 每个矩阵 等价 于一个

    2024年02月11日
    浏览(69)
  • 【问题证明】矩阵方程化为特征值方程求得的特征值为什么是全部特征值?不会丢解吗?

    这个问题困扰了我好久,一直感觉如果有其他的特征值没法证伪,不过一直存在思想的层面,没有实际解决,今天突然想到动笔来解决,遂得解,证明如下。 这个证明看似证明过后很直观,但实际上思维走向了牛角尖的时候光靠思考是无法得出令人信服的结论的,唯有实际动

    2024年02月05日
    浏览(59)
  • 标准化拉普拉斯矩阵特征值范围为什么小于等于2?(证明)

    谱图使用标准化拉普拉斯矩阵 L n o r m L^{norm} L n or m 的一个重要原因就是, L n o r m L^{norm} L n or m 比拉普拉斯矩阵 L L L 稳定。很多资料只是简单地介绍了 L n o r m L^{norm} L n or m ,在kipfGCN中也只是简单地提到 L n o r m L^{norm} L n or m 的特征值不大于2。本文搜集了相关lecture,并推导

    2024年02月11日
    浏览(66)
  • 为什么 conda 不能升级 python 到 3.12

    弄清楚为什么执行了如下升级命令后, python 版本还是 3.11? 因为 conda forge 没有完成 migration Migration is the process on Conda Forge by which packages get rebuilt to support new global versions, such as Python 3.12 or R 4.3. Conda Forge provides a dashboard to track the status of migrations, such as Python 3.12. 迁移(migration)

    2024年02月05日
    浏览(78)
  • pc端字体为什么到12像素以后不生效

    因为谷歌浏览器默认的最小字体是12像素,如果去‘设置’里面修改最小字体,是可以达到修改效果的,但是,你不能解决用户的浏览器设置 解决办法如下 重点样式

    2024年02月09日
    浏览(31)
  • mysql查询慢是为什么 怎么改善43.242.205.12

    MySQL查询速度慢是一个令人头痛的问题,它可能会导致应用程序性能下降,影响用户体验。为了解决这个问题,需要了解MySQL查询速度慢的原因,并采取相应的改善措施。 一、MySQL查询速度慢的原因43.242.205.1 查询语句不合理 不合理的查询语句是导致MySQL查询速度慢的常见原因

    2024年02月12日
    浏览(44)
  • 为什么要进行数据治理

            数据治理是个大话题,包含的环节也非常多,从数据集成、数据质量、数据资产、数据安全、数据标准各个环节。数据治理最近越来越受到企业的关注,为什么越来越多的企业开始进行数据治理呢?因为他们开始意识到了数据治理的价值。本质上来讲数据治理的价

    2024年02月09日
    浏览(56)
  • 软件为什么要进行性能压力测试?

    软件为什么要进行性能压力测试?随着软件应用的不断增多和复杂度的提高,软件的性能对用户体验和业务成功至关重要。性能问题可能导致软件运行缓慢、崩溃或无响应,给用户带来不便甚至损失。为了确保软件能够在高负载和压力下正常运行,性能压力测试变得至关重要

    2024年02月13日
    浏览(59)
  • 什么是模块化?为什么要进行模块化开发?

    模块化是一种软件开发的设计模式,它将一个大型的软件系统划分成多个独立的模块,每个模块都有自己的功能和接口,并且能够与其他模块独立地工作。  先来一段八股文 模块化开发可以带来以下好处: 提高代码的复用性:模块化可以将代码划分成可重用的部分,降低代

    2023年04月12日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包