Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍

这篇具有很好参考价值的文章主要介绍了Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一,矩阵Matrix的数学原理

矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

在Matrix Matrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和错切等操作,这些操作对应于特定的矩阵变换。例如,缩放操作对应于矩阵的元素乘以一个标量,平移操作对应于矩阵的元素加上一个偏移量,旋转操作则通过矩阵的置换和缩放来实现。

Matrix的数学原理在实际应用中非常重要。在图形处理、计算机视觉、机器学习等领域,都需要使用到矩阵运算和变换。掌握矩阵的数学原理有助于更好地理解和应用这些技术。

二,3x3矩阵的计算方法:

3x3矩阵的计算方法包括加法、减法、数乘和矩阵乘法。

加法是将两个3x3矩阵对应位置的元素相加,得到一个新的3x3矩阵。减法是将两个3x3矩阵对应位置的元素相减,得到一个新的3x3矩阵。数乘是将一个标量和一个3x3矩阵相乘,得到一个新的3x3矩阵。矩阵乘法是将两个3x3矩阵按照一定的规则相乘,得到一个新的3x3矩阵。

在进行矩阵乘法时,需要按照一定的规则进行计算,即左边矩阵的第一行的元素分别与右边矩阵的第一列的元素相乘,然后求和得到相乘矩阵的第一行的第一个元素。同样地,左边矩阵的第一行的元素分别与右边矩阵的第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素,以此类推。

另外,还有三阶矩阵乘法的公式:D=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33- a11a23a32。这个公式可以帮助我们快速地计算出两个3x3矩阵的乘积。

需要注意的是,在进行矩阵运算时,需要遵循一定的运算规则,如先进行括号内的运算,然后进行加、减、乘等运算,最后进行除法运算。同时,要注意矩阵的维数,即行数和列数,只有当两个矩阵的维数相同时才能进行矩阵运算。

三,四种变换的具体情形

1,平移变换
假定有一个点的坐标是 P_(x_0,y_0)将其移动到P_(x,y) ,再假定在x轴和y轴方向移动的大小分别为:
△x = x - x_0
△y = y - y_0
如下图所示:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法不难知道:
x = x_0 + △x
y = y_0 + △y
如果用矩阵来表示的话,就可以写成:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法
2,旋转变换
围绕坐标原点旋转

假定有一个点的坐标是 P_(x_0,y_0) ,相对坐标原点顺时针旋转 theta后的情形,同时假定P点离坐标原点的距离为r,如下图:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法那么,
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法如果用矩阵,就可以表示为:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法3,缩放变换
理论上而言,一个点是不存在什么缩放变换的,但考虑到所有图像都是由点组成,因此,如果图像在x轴和y轴方向分别放大k1和k2倍的话,那么图像中的所有点的x坐标和y坐标均会分别放大k1和k2倍,即:
x = k_1 x x_0
y = k_2 x y_0

用矩阵表示就是:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法4,对称变换(翻转)
事实上,我们还可以利用Matrix,进行对称变换。所谓对称变换,就是经过变化后的图像和原图像是关于某个对称轴是对称的。比如,某点 经过对称变换后得到,
如果对称轴是x轴,那么,
x = x_0
y = -y_0
用矩阵表示就是:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法
如果对称轴是y轴,那么,
x = -x_0
y =y_0

用矩阵表示就是:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法如果对称轴是y = x,如图:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法四,基本方法解析

1,构造函数

public Matrix()
public Matrix(Matrix src)

构造函数有两个,第一个是直接创建一个单位矩阵,第二个是根据提供的矩阵创建一个新的矩阵(采用deep copy)

单位矩阵如下:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法2,平移效果

public void setTranslate(float dx, float dy)

设置平移效果,参数分别是x,y上的平移量。
效果图如下:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法
在Android中,Matrix 类用于执行各种2D图形变换,包括平移。以下是一个示例代码,展示如何使用 Matrix 实现平移:

Matrix matrix = new Matrix();  
matrix.setTranslate(dx, dy); // dx 和 dy 是平移的距离  
  
// 假设你有一个 Bitmap 对象  
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.my_image);  
  
// 应用 Matrix 到 Bitmap 上  
Bitmap transformedBitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);  
  
// 现在,transformedBitmap 是平移后的图像

在上述代码中,setTranslate 方法用于设置平移的距离。dx 和 dy 参数分别表示在x轴和y轴方向上的平移距离。然后,通过 createBitmap 方法将应用了平移变换的 Matrix 应用到一个 Bitmap 上,得到平移后的图像。

2,缩放效果

public void setScale(float sx, float sy, float px, float py)
public void setScale(float sx, float sy)

两个方法都是设置缩放到matrix中,sx,sy代表了缩放的倍数,px,py代表缩放的中心。这里跟上面比较类似不做讲解了。

3,旋转效果

public void setRotate(float degrees, float px, float py)
public void setRotate(float degrees)

看一个示例,我们把图像旋转90度,那么90度对应的sin和cos分别是1和0。
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法
4,对称翻转
在Android中,Matrix类并没有直接提供实现对称的接口。对称变换通常涉及到更复杂的几何变换,包括旋转、平移和缩放等。Matrix类提供了一些基本的方法来实现这些变换,但如果你需要实现更复杂的对称变换,可能需要自定义实现或者使用其他图形处理库。

如果你需要实现对称变换,一种可能的解决方案是先对图像进行对称变换,然后再使用Matrix类的方法进行平移、旋转和缩放等操作。这需要一些几何知识来计算对称变换的矩阵,然后将其应用到图像上。

以下是一个示例代码,展示了如何使用Matrix类实现对称变换:

// 假设你有一个 Bitmap 对象  
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.my_image);  
  
// 定义对称变换的矩阵  
Matrix matrix = new Matrix();  
matrix.setScale(-1, 1); // 对称变换的矩阵  
matrix.postTranslate(bitmap.getWidth(), 0); // 执行对称变换后的平移  
  
// 应用 Matrix 到 Bitmap 上  
Bitmap symmetricBitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);  
  
// 现在,symmetricBitmap 是对称变换后的图像

在上述代码中,我们首先创建一个 Matrix 对象,并使用 setScale 方法设置对称变换的矩阵。这里我们使用了 -1 和 1 作为缩放因子,分别表示在x轴和y轴方向上的对称变换。然后,我们使用 postTranslate 方法将对称变换后的图像平移到正确的位置。最后,通过 createBitmap 方法将应用了对称变换和平移的 Matrix 应用到一个 Bitmap 上,得到对称变换后的图像。

需要注意的是,这只是一个简单的示例代码,实际的对称变换可能需要更复杂的矩阵计算。如果你需要实现更复杂的对称变换,可能需要使用更高级的图形处理库或者自定义实现。

五,高级方法解析

上面的基本方法中,有关于变换的set方法都可以带来不同的效果,但是每个set都会把上个效果清除掉,例如依次调用了setScale,setTranslate,那么最终只有setTranslate会起作用,那么如何才和将两种效果复合呢。Matrix给我们提供了很多方法。但是主要都是2类:

preXXXX:以pre开头,例如preTranslate
postXXXX:以post开头,例如postScale

他们分别代表了前乘,和后乘。看一段代码:

Matrix matrix = new Matrix();
matrix.setTranslate(100, 1000);
matrix.preScale(0.5f, 0.5f);

这里matrix前乘了一个scale矩阵,换算成数学式如下:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法
从上面可以看出,最终得出的matrix既包含了缩放信息也有平移信息。
后乘自然就是matrix在后面,而缩放矩阵在前面,由于矩阵前后乘并不等价,也就导致了他们的效果不同。我们来看看后乘的结果:
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法可以看到,结果跟上面不同,并且这也不是我们想要的结果,这里缩放没有更改,但是平移被减半了,换句话说,平移的距离也被缩放了。所以需要注意前后乘法的关系。

matrix除了上面的方法外,还有一些其他的方法。

public boolean setRectToRect(RectF src, RectF dst, ScaleToFit stf)

在Android中,setRectToRect 是 Matrix 类的一个方法,用于将一个矩形(源矩形)转换到另一个矩形(目标矩形)。这个方法通常用于图形变换,例如在图像处理或绘图操作中。

该方法接受四个参数:

src:源矩形的左上角坐标(x, y)和其宽度和高度(width, height)。
dst:目标矩形的左上角坐标(x, y)和其宽度和高度(width, height)。
filterMin:缩放过滤模式的最小值。
filterMag:缩放过滤模式的最大值。

这个方法的作用是将源矩形转换为目标矩形,通过矩阵变换实现平移、缩放、旋转等操作。它可以根据需要选择不同的缩放过滤模式,以控制图像的平滑度和质量。

以下是一个示例代码,展示了如何使用 setRectToRect 方法进行图像变换:

Matrix matrix = new Matrix();  
// 设置源矩形的坐标和大小  
float srcLeft = 0;  
float srcTop = 0;  
float srcWidth = 100;  
float srcHeight = 100;  
// 设置目标矩形的坐标和大小  
float dstLeft = 50;  
float dstTop = 50;  
float dstWidth = 200;  
float dstHeight = 200;  
// 设置缩放过滤模式(使用线性插值)  
matrix.setRectToRect(new RectF(srcLeft, srcTop, srcLeft + srcWidth, srcTop + srcHeight),  
                     new RectF(dstLeft, dstTop, dstLeft + dstWidth, dstTop + dstHeight),  
                     Matrix.ScaleToFit.CENTER, Matrix.ScaleToFit.CENTER);  
// 应用矩阵到 Bitmap 上进行变换  
Bitmap transformedBitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);

在上述示例中,我们首先创建了一个 Matrix 对象,并使用 setRectToRect 方法将源矩形转换为目标矩形。这里,我们使用了线性插值作为缩放过滤模式,使图像在变换过程中保持平滑。然后,我们将应用了矩阵变换的 Matrix 应用到一个 Bitmap 上,得到变换后的图像。

ScaleToFit 有如下四个值:

FILL: 可能会变换矩形的长宽比,保证变换和目标矩阵长宽一致。
START:保持坐标变换前矩形的长宽比,并最大限度的填充变换后的矩形。至少有一边和目标矩形重叠。左上对齐。
CENTER: 保持坐标变换前矩形的长宽比,并最大限度的填充变换后的矩形。至少有一边和目标矩形重叠。
END:保持坐标变换前矩形的长宽比,并最大限度的填充变换后的矩形。至少有一边和目标矩形重叠。右下对齐。

你的鼓励将是我创作的最大动力,求大神打赏!!!
Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍,Android应用进阶篇,android,矩阵,算法文章来源地址https://www.toymoban.com/news/detail-815178.html

到了这里,关于Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • webgl-矩阵、旋转、平移、缩放 glMatrix组件

    引入新组建glMatrix glMatrix.js /*! @fileoverview gl-matrix - High performance matrix and vector operations @author Brandon Jones @author Colin MacKenzie IV @version 3.4.3 Copyright (c) 2015-2021, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation f

    2024年02月10日
    浏览(48)
  • 2D坐标系下的点的转换矩阵(平移、缩放、旋转、错切)

    1. 平移 (Translation) 在2D空间中,我们经常需要将一个点平移到另一个位置。假设空间中的一点 P ( x , y ) P(x,y) P ( x , y ) ;将其向 x , y x, y x , y 方向分别平移 t x t_x t x ​ , t y t_y t y ​ , 假设平移后点的坐标为 ( x ′ , y ′ ) (x\\\',y\\\') ( x ′ , y ′ ) ,则上述点的平移操作可以归纳为

    2024年02月15日
    浏览(39)
  • 三维变换矩阵实战——三维点云的旋转、缩放、镜像、错切、平移、正交投影

    旋转矩阵:右边矩阵是点云的原始坐标,左边的是旋转矩阵     可视化:绕x轴旋转90度 代码: 旋转矩阵:    可视化:绕y轴旋转180度 代码: 旋转矩阵:    可视化:绕z轴旋转90度 代码: 旋转矩阵:  线绕哪个轴转,xyz矩阵就和哪和轴的旋转矩阵先计算      可视化:先

    2024年02月04日
    浏览(93)
  • 【Android】Bitmap图片旋转、缩放、翻转等变换(90/100)

    自定义BitmapChangeView: 工具类: 布局引用: 应用如下: 推荐理由 postman在国内使用已经越来越困难: 1、登录问题严重 2、Mock功能服务基本没法使用 3、版本更新功能已很匮乏 4、某些外力因素导致postman以后能否使用风险较大 出于以上考虑因此笔者自己开发了一款api调试开发工

    2024年02月16日
    浏览(36)
  • Web3D数学基础(平移、旋转、缩放矩阵)—WebGL、WebGPU、Threejs

    参考资料:threejs中文网 threejs qq交流群:814702116 本下节课给大家介绍下矩阵的概念,以及用于几何变换的矩阵,比如平移矩阵、缩放矩阵、旋转矩阵。 如果你对这些几何变换的矩阵概念比较熟悉,可以跳过本节课。 线性代数、图形学 如果你有《线性代数》、《计算机图形学

    2024年02月03日
    浏览(53)
  • Android 对View 进行旋转、缩放、平移的属性变换后,获取外矩形顶点

    来张图 Android View 通过平移、旋转、缩放后,顶点映射 之前写的这个文章,里面用到的是 matrix.mapPoints() 通过 矩形的4个点来映射出新的4个点。 个人以为这就会得到正确的结果。 最近呢,就想着,验证一下这个是不是正确的 验证想法: “基于 变换后的 ltrb,加一个自定义

    2023年04月23日
    浏览(47)
  • python实现两函数通过缩放,平移和旋转进行完美拟合

    前几天在工作的时候接到了一个需求,希望将不同坐标系,不同角度的两条不规则曲线,并且组成该曲线的点集数量不一致,需求是希望那个可以通过算法的平移和旋转搞到一个概念里最贴合,拟合态进行比较。 这是初步将两组数据画到图里的情况,和背景需求是一致的。其

    2024年02月15日
    浏览(36)
  • 【C++】【Opencv】cv::warpAffine()仿射变换函数详解,实现平移、缩放和旋转等功能

    仿射变换是一种二维变换,它可以将一个二维图形映射到另一个二维图形上,保持了图形的“形状”和“大小”不变,但可能会改变图形的方向和位置。仿射变换可以用一个线性变换矩阵来表示,该矩阵包含了六个参数,可以进行平移、缩放、旋转等操作。通过原理、函数和

    2024年02月05日
    浏览(62)
  • 转换矩阵、平移矩阵、旋转矩阵关系以及python实现旋转矩阵、四元数、欧拉角之间转换

    由于在平时总是或多或少的遇到平移旋转的问题,每次都是现查资料,然后查了忘,忘了继续查,这次弄明白之后干脆写一篇文章,给人方便同时于己方便,后续如有扩充或变动也方便添加。 假设有两个向量 a 1 = ( x 1 , y 1 , z 1 ) a_1 = (x_1, y_1, z_1) a 1 ​ = ( x 1 ​ , y 1 ​ , z 1 ​

    2024年02月03日
    浏览(79)
  • GLSL——旋转、平移和缩放

    hello 兄弟们,好久不见撒,我又回来啦!,今天主要讲解如何在顶点着色器中进行旋转、平移和缩放,涉及到矩阵和向量方面的知识哦,忘记的可以翻一下高中数学啦,在讲之前,先回顾一下矩阵和向量点积的知识,矩阵点乘向量,等于矩阵的每一行分别和向量相乘的和,如

    2024年02月16日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包