【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?

这篇具有很好参考价值的文章主要介绍了【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        在之前的文章中,我们已经学习了一元线性回归模型,其中最关键的参数是w和b。机器学习的目的就是去得到合适w和b后能准确预测未知数据。但现实世界是复杂的,一个事情的发生绝大多数时候不会是一个原因导致。

        因此多元线性回归模型区别与一元线性回归主要的不同就在变量不再是w和b两个,而可以是,,...,,多个变量。特征量变多了,很多之前学过的东西也就变复杂了,下面我来一个个讲解。

一、多元线性回归模型

(1)多维特征

        多元线性回归模型在定义上与一元线性回归模型不同,还是拿房价预测为例,我们假设房价预测有如下几个特征量。如图中所示有“房屋面积”、“房间数量”、“楼层数量”、“房屋年限”这四个特征量,在加上b偏置的话,一共是五个元。

【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?,【机器学习】,机器学习,线性回归,人工智能

(2)向量化表示

        多元线性回归模型在表示上与一元线性回归模型不同,上面提到的四个特征量,可以写成(,,,),这明显是一个向量呀,所以可以用来表示。这些特征量对应的权重也可以同样方式写成。于是我们得到了多元线性回归模型的公式:

模型 公式
一元线性回归 【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?,【机器学习】,机器学习,线性回归,人工智能
多元线性回归 【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?,【机器学习】,机器学习,线性回归,人工智能
多元线性回归向量表示 【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?,【机器学习】,机器学习,线性回归,人工智能

        其中的n是指特征量的个数。向量化后,一方面看上去简洁,另一方面通过使用numpy库,可以进行快速的矩阵运算

二、多元线性回归的梯度下降算法

        多元线性回归模型在梯度下降处理上与一元线性回归模型不同,在某一点处维多变多了,梯度就变成这一点的所有偏导组成的向量,因此对于MSE均方误差函数而言每一个w都要求一次偏导。

        特征量  时,梯度下降算法就变成了,一次梯度更新就要

        从

        

        到

        

        共更新n个w的加上更新b

        

      文章来源地址https://www.toymoban.com/news/detail-815326.html

到了这里,关于【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习300问】61、逻辑回归与线性回归的异同?

            本文讲述两个经典机器学习逻辑回归(Logistic Regression)和线性回归(Linear Regression)算法的异同,有助于我们在面对实际问题时更好的进行模型选择。也能帮助我们加深对两者的理解,掌握这两类基础模型有助于进一步理解更复杂的模型结构,例如逻辑回归是许多复

    2024年04月12日
    浏览(28)
  • 学习记录2-多元线性回归模型(附上python代码)

    研究货运总量 y (万吨)与工业总产值 x1(亿元)、农业总产值 x2(亿元),居民非商品支出 X3 (亿元)的关系。数据见表3-9。 (1)计算出 y , x1 ,x2, x3 的相关系数矩阵。 (2)求 y 关于 x1 ,x2, x3 的三元线性回归方程。 (3)对所求得的方程做拟合优度检验。 (4)对回归方程做

    2024年02月03日
    浏览(39)
  • python机器学习(三)特征预处理、鸢尾花案例--分类、线性回归、代价函数、梯度下降法、使用numpy、sklearn实现一元线性回归

    数据预处理的过程。数据存在不同的量纲、数据中存在离群值,需要稳定的转换数据,处理好的数据才能更好的去训练模型,减少误差的出现。 标准化 数据集的标准化对scikit-learn中实现的大多数机器学习算法来说是常见的要求,很多案例都需要标准化。如果个别特征或多或

    2024年02月16日
    浏览(44)
  • 人工智能基础_机器学习001_线性回归_多元线性回归_最优解_基本概念_有监督机器学习_jupyter notebook---人工智能工作笔记0040

       线性和回归,就是自然规律,比如人类是身高趋于某个值的概率最大,回归就是通过数学方法找到事物的规律. 机器学习作用: 该专业实际应用于机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序

    2024年02月06日
    浏览(51)
  • 【机器学习300问】16、逻辑回归模型实现分类的原理?

            在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦:                              【机器学习300问】15、什么是逻辑回归模型?     

    2024年01月25日
    浏览(55)
  • 多元线性回归模型

    目录 一、一元线性回归之旧轿车价格案例 二、多元线性回归之洞庭湖污染物案例实测 三、说一说plot函数的用法 四、感想 直接上例题 一、一元线性回归之旧轿车价格案 以x表示使用年数,y表示相应平均价格。根据表中x、y的数据,建立一个数据模型,分析旧轿车平均价格与

    2024年02月05日
    浏览(39)
  • 基于Python多元线性回归模型

    提示:基于Python的多元线性回归模型 文章目录 前言 一、读取数据 二、建立模型  三、预测新值  四、去截距模型 总结 本文主要是基于多元回归线性模型,然后建立模型和分析,解决多元线性回归模型存在的问题和优化多元线性回归模型,原理就不多讲了,可查看《应用回

    2024年02月07日
    浏览(42)
  • 如何对多元线性回归模型调参?

    多元线性回归模型通常不像复杂的机器学习模型那样拥有许多可调节的超参数。然而,仍有一些关键步骤和技巧可以用于优化多元线性回归模型的性能: 特征选择 移除无关特征:通过分析特征与目标变量的关联度,移除与目标变量关联度低的特征。 使用特征选择方法:可以

    2024年01月23日
    浏览(40)
  • 【机器学习】线性回归模型详解

    PS:本文有一定阅读门槛,如果有不明白的地方欢迎评论询问! 接下来我们将要学习我们的第一个模型——线性回归。比如说我需要根据数据预测某个面积的房子可以卖多少钱 接下来我们会用到以下符号: m:训练样本数量 x:输入值,又称为属性值 y:输出值,是我们需要的结果

    2024年02月03日
    浏览(60)
  • Python多元线性回归预测模型实验完整版

    实验目的 通过多元线性回归预测模型,掌握预测模型的建立和应用方法,了解线性回归模型的基本原理 实验内容 多元线性回归预测模型 实验步骤和过程 (1)第一步:学习多元线性回归预测模型相关知识。 一元线性回归模型反映的是单个自变量对因变量的影响,然而实际情况

    2024年02月09日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包