YOLOv7调用摄像头检测报错解决

这篇具有很好参考价值的文章主要介绍了YOLOv7调用摄像头检测报错解决。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

yolov7detect.py文件调用本地摄像头,把source参数设为0

    parser.add_argument('--source', type=str, default='0', help='source')  # file/folder, 0 for webcam

报错:cv2.error: OpenCV(3.4.2) 一堆地址:The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function 'cvShowImage'

我原本的环境里opencv-python版本是4.1.2.30

参考链接:The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support-CSDN博客

我的解决方法,卸载opencv-python

pip uninstall opencv-python

再重新安装

pip install opencv-python
pip install opencv-contrib-python

YOLOv7调用摄像头检测报错解决,YOLO

就好使了

YOLOv7调用摄像头检测报错解决,YOLO文章来源地址https://www.toymoban.com/news/detail-815380.html

到了这里,关于YOLOv7调用摄像头检测报错解决的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用YOLOv5实现单摄像头实时目标检测

    我将在上一节的基础上,一步一步展示如何实现单摄像头实时目标检测,其中包括我在配置过程中遇到的报错和解决方法。 将\\\'--source\\\'的默认值改为0 这里的\\\'0\\\'是指系统默认的第一个摄像头,通常是电脑自带的摄像头,所以一定要记得把摄像头打开再运行代码(有些电脑会有摄

    2024年02月03日
    浏览(66)
  • windows平台使用CMake工具对darknet的编译以及安装过程+yolov3+图像检测+摄像头检测+视频检测+手机作为摄像头进行检测(详解)

    目录 1.编译和安装教程 (1)安装visual studio 2022 (2)CMake下载及安装 (3)下载darknet.zip文件 (4)安装OpenCV  (5)修改Makefile文件 (6)修改CMakeLists.txt文件 (7)使用CMake工具 2.yolov3进行测试 (1)单张图像进行检测  (2)开启摄像头进行检测 (3) 视频检测 (4)使用手机摄

    2024年02月05日
    浏览(75)
  • 【玩转Jetson TX2 NX】(七)TX2 NX YoLoV4环境搭建+板载摄像头实时目标检测(详细教程+错误解决)

    直接下载,然后解压,最后移动到Jetson TX2 NX,如图所示,darknet下载链接: https://github.com/AlexeyAB/darknet 将解压的文件复制到Jetson TX2 NX,如图所示: 下载yolov4.weights权重文件,如图所示: 将权重文件 yolov4.weights 拷贝至 darknet 目录下,如图所示: 依次输入命令,修改Makefile 如图

    2024年02月10日
    浏览(44)
  • 基于opencv的YOLOV3对摄像头、视频的目标检测

    目录 1. 介绍 2. 代码实现 2.1 处理单帧函数 2.2 非极大值抑制 2.3 绘制边界框

    2024年02月14日
    浏览(47)
  • 实时目标检测:基于YOLOv3和OpenCV的摄像头应用

    随着人工智能和计算机视觉技术的不断发展,目标检测成为了智能监控、自动驾驶、机器人等领域的关键技术之一。实时目标检测更是对系统的反应速度和准确度提出了更高的要求。本文介绍使用OpenCV和YOLOv3实现实时目标检测的方法,演示如何使用OpenCV调用YOLOv3模型进行实时

    2024年02月08日
    浏览(43)
  • 在yolov5的detect中我该如何调用第三方摄像头?

    要在 YOLOv5 的 detect 中调用第三方摄像头,你可以使用 OpenCV 库中的 VideoCapture 类来读取摄像头的视频流。 你可以这样做: 首先,安装 OpenCV 库。 然后,在你的代码中包含以下头文件: 接下来,创建一个 VideoCapture 对象,用于获取摄像头的视频流: 然后,打开摄像头,并检查

    2024年02月12日
    浏览(46)
  • c++读取yolov5模型进行目标检测(读取摄像头实时监测)

    文章介绍 本文是篇基于yolov5模型的一个工程,主要是利用c++将yolov5模型进行调用并测试,从而实现目标检测任务 任务过程中主要重点有两个,第一 版本问题,第二配置问题 一,所需软件及版本       训练部分 pytorch==1.13.0  opencv==3.4.1   其他的直接pip即可       c++部署 

    2024年02月07日
    浏览(44)
  • OPENCV C++(三)二值化灰度函数+调用摄像头+鼠标响应+肤色检测

    图像 目标图像 rgb转灰度 灰度图,目标图,阈值,大于阈值的转换的像素值,方法为大津法 灰度图,目标图,大于阈值的转换的像素值,自适应方法,二值化方法 虽然人物的信息丢失了很多,但是背景基本上被去掉了。丢失的人物的信息可以通过位运算等恢复。在去除背景

    2024年02月14日
    浏览(59)
  • yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)

    github仓库 所需: 安装了Ubuntu20系统的RK3588 安装了Ubuntu18的电脑或者虚拟机 一、yolov5 PT模型获取 Anaconda教程 YOLOv5教程 经过上面两个教程之后,你应该获取了自己的 best.pt 文件 二、PT模型转onnx模型 将 models/yolo.py 文件中的 class 类下的 forward 函数由: 改为: 将 export.py 文件中的

    2024年02月06日
    浏览(48)
  • 计算机视觉的应用7-利用YOLOv5模型启动电脑摄像头进行目标检测

    大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用7-利用YOLOv5模型启动电脑摄像头进行目标检测,本文将详细介绍YOLOv5模型的原理,YOLOv5模型的结构,并展示如何利用电脑摄像头进行目标检测。文章将提供样例代码,以帮助读者更好地理解和实践YOLOv5模型。 目录 引

    2024年02月10日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包