动态规划:01背包问题(二)

这篇具有很好参考价值的文章主要介绍了动态规划:01背包问题(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

上篇博客动态规划:01背包问题(一)将的是用二维数组来解决,而本篇博客就是把二维dp数组降为一维dp数组(滚动数组)在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

题目:

46. 携带研究材料

时间限制:5.000S 空间限制:128MB

题目描述:

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。
小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述:

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述:

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例:

6 1
2 2 3 1 5 2
2 3 1 5 4 3

输出示例:

5

提示信息:

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。

数据范围:
1 <= N <= 1000
1 <= M <= 1000
研究材料占用空间和价值都小于等于 1000

思路:

动规五部曲分析如下:

  1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

  1. 一维dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
一维dp数组的初始化还是比二维dp数组初始化简单很多,只需全部初始化为0即可。

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

  1. 一维dp数组遍历顺序

代码如下:

    # 动态规划求解最大价值
    for i in range(bag_nums):  # 遍历每个物品
        for j in range(bag_weight, weight[i] - 1, -1):  # 从后往前遍历背包重量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])  # 更新当前背包重量对应的最大价值

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

(这里如果读不懂,就再回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

这里还有一个比较难理解的地方,就是为什么背包的倒序遍历是从 bag_weight 遍历到 weight[i] - 1而不是遍历到 0?

其实遍历到weight[i]的过程就是把 j < weight[i] 的结果排除在外了,每趟循环只需覆盖需要变化的dp数组的值即可,这么说还是比较抽象,大家看下面的表格和图来理解

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

以上述表格数据为例每次循环时变量的取值:

i weight[i] j
0 1 4,3,2,1
1 3 4,3
2 4 4

每一趟循环dp数组的变化:
动态规划:01背包问题(二),python,算法,动态规划,算法,python
因为只有3个物品,所以有三次大循环(最外层for循环),第一次大循环改变dp数组的后四个值,第二次改变后两个,第三次改变最后一个(因为还是35最大,所以值没有变)

相信根据上述表格和图片大家能进一步理解遍历的过程了

上述中的代码其实还可以写成这样:

     for i in range(bag_nums):
         for j in range(bag_weight, 0, -1):
             if j >= weight[i]:
                 dp[j] = max(dp[j], dp[j-weight[i]] + vals[i])

这样大家就会明显看出来遍历的差异了。

  1. 举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
动态规划:01背包问题(二),python,算法,动态规划,算法,python文章来源地址https://www.toymoban.com/news/detail-815761.html

代码及详注释:

def result():
    # 读取输入的数据
    N = [int(x) for x in input().split()]  # 输入背包数量和背包总重量
    weight = [int(x) for x in input().split()]  # 输入每个物品的重量
    value = [int(x) for x in input().split()]   # 输入每个物品的价值

    bag_nums = N[0]  # 背包数量
    bag_weight = N[1]  # 背包总重量

    dp = [0] * (bag_weight + 1)  # 创建一个数组用于记录每个背包重量对应的最大价值

    # 动态规划求解最大价值
    for i in range(bag_nums):  # 遍历每个物品
        for j in range(bag_weight, weight[i] - 1, -1):  # 从后往前遍历背包重量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])  # 更新当前背包重量对应的最大价值

    return dp[bag_weight]  # 返回背包总重量对应的最大价值

if __name__ == '__main__':
    print(result())  # 输出最大价值

到了这里,关于动态规划:01背包问题(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 动态规划-01背包问题(python)

    对于动态规划问题,就是牺牲空间来提高时间,通过将一个个小问题的答案存储起来,直接供给后面问题求解,避免重复的运算,从而提高效率,这就是动态规划的思想。 下面我们通过一个经典的01背包问题来了解动态规划的解题方法吧(文末附上完整代码) 首先,将每个物

    2024年02月06日
    浏览(42)
  • 算法套路十四——动态规划之背包问题:01背包、完全背包及各种变形

    如果对递归、记忆化搜索及动态规划的概念与关系不太理解,可以前往阅读算法套路十三——动态规划DP入门 背包DP介绍:https://oi-wiki.org/dp/knapsack/ 0-1背包:有n个物品,第i个物品的体积为w[i],价值为v[i],每个物品至多选一个, 求体积和不超过capacity时的最大价值和,其中i从

    2024年02月10日
    浏览(55)
  • C++算法初级11——01背包问题(动态规划2)

    辰辰采药 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时

    2024年02月02日
    浏览(48)
  • 【算法日志】动态规划刷题:01背包问题,多重背包问题(day37,day38)

    目录 前言 目标和(01背包) 一和零(01背包) 零钱兑换(多重背包) 排列总和(多重背包) 这两天都是背包问题,其中的01背包的一些应用问题需要一定的数学建模能力,需要i将实际问题简化成我们熟悉的背包问题;而这两天的多重背包问题还算比较基础,但也要我明白了

    2024年02月11日
    浏览(52)
  • 01背包问题----动态规划 -----python代码、优化

    问题描述: 容量为C的背包选择装物品,有n个物品,它们有各自的体积wi和价值vi,如何让背包里装入的物品具有最大价值? 解题思路: 也就是n个物品选择装入背包,每个物品都有两种选择,是(1)或否(0), 建模:       xi表示当前第i个物品是否选择,xi取值为(0,1)

    2024年02月04日
    浏览(53)
  • 动态规划——使用python解决01背包问题

    目录 什么是01背包问题? 题目: 输入格式: 输出格式: 代码实现: 代码执行示例: 代码解析:         01背包问题是一个经典的组合优化问题,通常用于描述如下情境:假设有一个背包,它能够承受一定的重量上限(即背包容量),同时有一组物品,每件物品有自己的重

    2024年02月03日
    浏览(56)
  • 【算法|动态规划 | 01背包问题No.2】AcWing 423. 采药

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【AcWing算法提高学习专栏】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成

    2024年02月06日
    浏览(46)
  • 算法设计与分析实验二:动态规划法求解TSP问题和01背包问题

    【实验内容】 (1)tsp问题:利用动态规划算法编程求解TSP问题,并进行时间复杂性分析。 输入:n个城市,权值,任选一个城市出发; 输出:以表格形式输出结果,并给出向量解和最短路径长度。 (2)01背包问题:利用动态规划算法编程求解0-1背包问题,并进行时间复杂性分

    2024年02月03日
    浏览(55)
  • 力扣算法刷题Day42|动态规划:01背包问题 分割等和子集

    力扣题目:01背包问题(二维数组) 刷题时长:参考题解 解题方法:动态规划 + 二维dp数组 复杂度分析 时间 空间 问题总结 理解递推公式困难 本题收获 动规思路:两层for循环,第一层i遍历物品,第二层j枚举背包容量以内所有值 确定dp数组及下标的含义:dp[i][j] 表示从下标

    2024年02月13日
    浏览(59)
  • 算法竞赛必考算法——动态规划(01背包和完全背包)

    1.1题目介绍 1.2思路一介绍(二维数组) 代码如下: 1.3思路二介绍(一维数组) 空间优化   为什么可以使用一维数组?   我们先来看一看01背包问题的状态转移方程,我们可以发现 f[i]只用到了f[i-1],其他的是没有用到的,我们可以用滚动数组来做。   还有一个原因就是我

    2024年02月02日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包