yolov8 tracking编码为web 和 rtsp流输出

这篇具有很好参考价值的文章主要介绍了yolov8 tracking编码为web 和 rtsp流输出。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 基础工作

打开cmd
输入 conda env list
输入 conda activate py38
查看 nvidia-smi
查看 nvcc,如下图所示 cuda为11.7 ,为确认可以查看program files 下面的cuda 安装,看到11.7 就行了,读者可以自行确认自己的版本。
rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp
查看nvidia-smi
rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp
打开yolov8 track以后,发现速度超级慢, 打开cpu占用率奇高,gpu为零, 打开cmd
import torch
torch.cuda.is_available()
为false
确认pytorch安装的为cpu版本,重新安装pytorch cuda 版本,去pytorch网站,点开后复制安装命令,把cuda版本改成自己本机的版本。

rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp
输入命令
python yolo\v8\detect\detect_and_trk.py model=yolov8s.pt source=“d:\test.mp4” show=True
rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp
gpu占用率上升到40% 左右。
rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp

2 输出到web

接下来我们要做的工作为rtsp server 编码上传, 为了让其他机器得到结果,我们必须编程并且得到图像结果,让后使用实时传输协议直接转成rtp 流,让本机成为rtsp server,使用vlc 等工具,可以直接拉取到编码后的流。
修改代码,上传结果,先把命令修改成为
python yolo\v8\detect\detect_and_trk.py model=yolov8s.pt source=“d:\test.mp4”
然后在代码里面自己用opencv 来show,也就是增加两行代码

        cv2.imshow("qbshow",im0)
        cv2.waitKey(3)

没问题show 出来了,也就是im0 是我们在增加了选框的地方,在show 代码的基础上把图片发送出去就行,我们选择使用websocket 发送,或者socket 直接发送都行,这样我们需要一个客户端还是服务端的选择,我们选择让python成为服务端,目的是为了不让python需要断线重连,python 成为服务端有很多好处,
1 是可以直接给web传送图片
2 是可以直接给

    def write_results(self, idx, preds, batch):

        p, im, im0 = batch
        log_string = ""
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        self.seen += 1
        im0 = im0.copy()
        if self.webcam:  # batch_size >= 1
            log_string += f'{idx}: '
            frame = self.dataset.count
        else:
            frame = getattr(self.dataset, 'frame', 0)
        # tracker
        self.data_path = p
    
        save_path = str(self.save_dir / p.name)  # im.jpg
        self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
        log_string += '%gx%g ' % im.shape[2:]  # print string
        self.annotator = self.get_annotator(im0)
        
        det = preds[idx]
        self.all_outputs.append(det)
        if len(det) == 0:
            return log_string
        for c in det[:, 5].unique():
            n = (det[:, 5] == c).sum()  # detections per class
            log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
    
    
        # #..................USE TRACK FUNCTION....................
        dets_to_sort = np.empty((0,6))
        
        for x1,y1,x2,y2,conf,detclass in det.cpu().detach().numpy():
            dets_to_sort = np.vstack((dets_to_sort, 
                        np.array([x1, y1, x2, y2, conf, detclass])))
        
        tracked_dets = tracker.update(dets_to_sort)
        tracks =tracker.getTrackers()
        
        for track in tracks:
            [cv2.line(im0, (int(track.centroidarr[i][0]),
                        int(track.centroidarr[i][1])), 
                        (int(track.centroidarr[i+1][0]),
                        int(track.centroidarr[i+1][1])),
                        rand_color_list[track.id], thickness=3) 
                        for i,_ in  enumerate(track.centroidarr) 
                            if i < len(track.centroidarr)-1 ] 
        

        if len(tracked_dets)>0:
            bbox_xyxy = tracked_dets[:,:4]
            identities = tracked_dets[:, 8]
            categories = tracked_dets[:, 4]
            draw_boxes(im0, bbox_xyxy, identities, categories, self.model.names)
           
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
        cv2.imshow("qbshow",im0)
        cv2.waitKey(3)
        return log_string

2.1 web中显示

在python中加上websocket server的代码,以下是一个示例代码,读者可以自己测试,但是要应用到python 的图像处理server中,我们要做一些修改

import asyncio
import threading
import websockets
import time
CONNECTIONS = set()


async def server_recv(websocket):
    while True:
        try:
            recv_text = await websocket.recv()
            print("recv:", recv_text)
        except websockets.ConnectionClosed as e:
            # 客户端关闭连接,跳出对客户端的读取,结束函数
            print(e.code)
            await asyncio.sleep(0.01)
            break

async def server_hands(websocket):
  
    CONNECTIONS.add(websocket)
    print(CONNECTIONS)
    try:
        await websocket.wait_closed()
    finally:
        CONNECTIONS.remove(websocket) 



def message_all(message):
    websockets.broadcast(CONNECTIONS, message)   

async def handler(websocket, path):
    # 处理新的 WebSocket 连接
    print("New WebSocket route is ",path)

    try:
        await server_hands(websocket) # 握手加入队列
        await server_recv(websocket)  # 接收客户端消息并处理
     
    except websockets.exceptions.ConnectionClosedError as e:
        print(f"Connection closed unexpectedly: {e}")
    finally:
        pass
        # 处理完毕,关闭 WebSocket 连接
    print("WebSocket connection closed")


async def sockrun():
    async with websockets.serve(handler, "", 9090):
        await asyncio.Future()  # run forever

def main_thread(): 
    print("main")
    asyncio.run(sockrun())

rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp

2.2 修改

修改的地方为我们不能让websocket 阻塞主线程,虽然websocket为协程处理,但是依然要放到线程里面

def predict(cfg):
    init_tracker()
    random_color_list()
        
    cfg.model = cfg.model or "yolov8n.pt"
    cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2)  # check image size
    cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
    predictor = DetectionPredictor(cfg)
    predictor()


if __name__ == "__main__":
    thread = threading.Thread(target=main_thread)
    thread.start()
    predict()

值得注意的地方是:
很多人喜欢把编码做成base64 ,这样没有必要, 服务程序里面把二进制编码成base64, 消耗了cpu, 然后发送还大了很多,实际上我们直接发送二进制就行了,发送时

   cv2.waitKey(3)
   _, encimg = cv2.imencode('.jpg', im0)
   bys = np.array(encimg).tobytes()
   message_all(bys)

web端测试代码

<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>websocket</title>
    
</head>
<body>
    <div>
        <button onclick="connecteClient()">开始接收</button>
    </div>

    <br>
    <div>
        <img src="" id="python_img" alt="websock" style="text-align:left; width: 640px; height: 360px;"> 
    </div>
    <script>
        function connecteClient() {
            var ws = new WebSocket("ws://127.0.0.1:9090");

            ws.onopen = function () {
                console.log("WebSocket 连接成功");
            };

            ws.onmessage = function (evt) {
                var received_msg = evt.data;
                blobToDataURI(received_msg, function (result) {
                    document.getElementById("python_img").src = result;
                })
            };

            ws.onclose = function () {
                console.log("连接关闭...");
            };
        }

       
        function blobToDataURI(blob, callback) {
            var reader = new FileReader();
            reader.readAsDataURL(blob);
            reader.onload = function (e) {
                callback(e.target.result);
            }
        }
    </script>
</body>
</html>

其中接收到二进制完成以后直接显示,不用服务端编码成base64,下图表明web端可以正常拿到jpg图片显示

rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp

其中message_all 是广播,只要是websocket client 我们就给他发一份,这样做,不但可以发送给web,也可以发送给rtsp server,我们让rtsp server 链接上来,取到jpg后,解码成为rgb24,然后编码成为h264,让vlc 可以链接rtsp server取到rtsp 流

3 rtsp server 编码h264 输出

我们的rtsp server 端使用c++ 编写,为了加快速度,使用了内存共享,而没有使用websocket client,当然是可以的,考虑到这里要解码,又要编码输出,还有可能需要使用硬件编码,为了提高效率,就这么做了,而且还简单,缺点就是这样多了一个问题,rtspserve只能启动在本机上。先编写一个h264Frame, h265 是一样的道理,后面再更改,暂时运行在windows上,等完成了再修改。注意以下代码只能运行在windows上

class H264Frame :public TThreadRunable
{
	const wchar_t*  sharedMemoryMutex = L"shared_memory_mutex";
	const wchar_t*  sharedMemoryName = L"shared_memory";
	LPVOID v_lpBase = NULL;
	HANDLE v_hMapFile = NULL;
	HANDLE 	m_shareMutex = NULL;
	std::shared_ptr<xop::RtspServer> v_server;
	std::string v_livename;
	std::wstring v_pathname;
	std::wstring v_pathmutex_name;

	int v_fps = 10;

	Encoder v_encoder;
	xop::MediaSessionId v_id;
	int v_init = 0;
	int v_quality = 28;
public:
	H264Frame(std::shared_ptr<xop::RtspServer> s, const char* livename, const wchar_t* pathname, xop::MediaSessionId session_id)
	{
		v_server = s;
		v_livename = livename;
		v_pathname = pathname;
		if (pathname != NULL)
		{
			v_pathmutex_name = pathname;
			v_pathmutex_name += L"_mutex";
		}
		v_id = session_id;
	}
	~H264Frame() {}

	bool Open()
	{
		if (v_pathname.empty())
			v_hMapFile = OpenFileMappingW(FILE_MAP_ALL_ACCESS, NULL, sharedMemoryName);
		else
			v_hMapFile = OpenFileMappingW(FILE_MAP_ALL_ACCESS, NULL, v_pathname.c_str());

		if (v_hMapFile == NULL)
		{
			//printf(" Waiting shared memory creation......\n");
			return false;
		}
		return true;
	}
	void Close()
	{
		if (m_shareMutex != NULL)
			ReleaseMutex(m_shareMutex);
		if (v_hMapFile != NULL)
			CloseHandle(v_hMapFile);
	}

	bool IsOpened() const
	{
		return (v_hMapFile != NULL);
	}

	void sendFrame(uint8_t* data ,int size, int sessionid)
	{
		xop::AVFrame videoFrame = { 0 };
		videoFrame.type = 0;
		videoFrame.size = size;// sizeofdata;// frame_size;
		videoFrame.timestamp = xop::H264Source::GetTimestamp();
		//videoFrame.notcopy = data;
		videoFrame.buffer.reset(new uint8_t[videoFrame.size]);
		std::memcpy(videoFrame.buffer.get(), data, videoFrame.size);
		v_server->PushFrame(sessionid, xop::channel_0, videoFrame);
	}
	int ReadFrame(int sessionid)
	{
		if (v_hMapFile)
		{

			v_lpBase = MapViewOfFile(v_hMapFile, FILE_MAP_ALL_ACCESS, 0, 0, 0);
			unsigned char* pMemory = (unsigned char*)v_lpBase;

			int w = 0, h = 0;
			int frame_size = 0;
			std::memcpy(&w, pMemory, 4);
			std::memcpy(&h, pMemory + 4, 4);
			std::memcpy(&frame_size, pMemory + 8, 4);
			//printf("read the width %d height %d framesize %d\n", imageWidth,imageHeight, frame_size);
			uint8_t* rgb = pMemory + 12;
			if (v_init == 0)
			{
				v_encoder.Encoder_Open(v_fps, w, h, w, h, v_quality);
				v_init = 1;
			}
			
			v_encoder.RGB2YUV(rgb, w, h);
			AVPacket * pkt = v_encoder.EncodeVideo();
			//while (!*framebuf++);
			if (pkt!=NULL) {
				uint8_t* framebuf = pkt->data;
				frame_size = pkt->size;
				uint8_t* spsStart = NULL;
				int spsLen = 0;
				uint8_t* ppsStart = NULL;
				int ppsLen = 0;
				uint8_t* seStart = NULL;
				int seLen = 0;
				uint8_t* frameStart = 0;//非关键帧地址或者关键帧地址
				int frameLen = 0;
				AnalyseNalu_no0x((const uint8_t*)framebuf, frame_size, &spsStart, spsLen, &ppsStart, ppsLen, &seStart, seLen, &frameStart, frameLen);
				if (spsStart != NULL && ppsStart!=NULL)
				{
					sendFrame(spsStart, spsLen, sessionid);
					sendFrame(ppsStart, ppsLen, sessionid);
				}
				if (frameStart != NULL)
				{
					sendFrame(frameStart, frameLen, sessionid);
				}


				av_packet_free(&pkt);
			}
			UnmapViewOfFile(pMemory);
		}
		return -1;
	}

	void Run()
	{
		m_shareMutex = CreateMutexW(NULL, false, sharedMemoryMutex/*v_pathmutex_name.c_str()*/);		v_encoder.Encoder_Open(10, 4096, 1080, 4096, 1080, 27);
		while (1)
		{
			if (Open() == true)
			{
				break;
			}
			else
			{
				printf("can not open share mem error\n");
				Sleep(3000);
			}
		}
		printf("wait ok\n");
		//检查是否改变参数
		//重新开始
		int64_t m_start_clock = 0;
		float delay = 1000000.0f / (float)(v_fps);//微妙

		//合并的rgb
		uint8_t * rgb = NULL;
		uint8_t * cam = NULL;

		int64_t start_timestamp = av_gettime_relative();//  GetTimestamp32();
		while (1)
		{
			if (IsStop())
				break;
			//获取一帧
			//rgb = 
			if (v_hMapFile)
			{
				//printf("start to lock sharemutex\n");
				WaitForSingleObject(m_shareMutex, INFINITE);

				//printf("read frame\n");
				ReadFrame(v_id);

				ReleaseMutex(m_shareMutex);
			}
			else
			{
				printf("Shared memory handle error\n");
				break;
			}
			
			
			int64_t tnow = av_gettime_relative();// GetTimestamp32();
			int64_t total = tnow - start_timestamp; //總共花費的時間
			int64_t fix_consume = ++m_start_clock * delay;
			if (total < fix_consume) {
				int64_t diff = fix_consume - total;
				if (diff > 0) { //相差5000微妙以上
					std::this_thread::sleep_for(std::chrono::microseconds(diff));
				}
			}
		}
		if (v_init == 0)
		{
			v_encoder.Encoder_Close();
			v_init = 1;
		}
	}

};


int main(int argc, char **argv)
{	
	
	std::string suffix = "live";
	std::string ip = "127.0.0.1";
	std::string port = "8554";
	std::string rtsp_url = "rtsp://" + ip + ":" + port + "/" + suffix;
	
	std::shared_ptr<xop::EventLoop> event_loop(new xop::EventLoop());
	std::shared_ptr<xop::RtspServer> server = xop::RtspServer::Create(event_loop.get());

	if (!server->Start("0.0.0.0", atoi(port.c_str()))) {
		printf("RTSP Server listen on %s failed.\n", port.c_str());
		return 0;
	}

#ifdef AUTH_CONFIG
	server->SetAuthConfig("-_-", "admin", "12345");
#endif

	xop::MediaSession *session = xop::MediaSession::CreateNew("live"); 
	session->AddSource(xop::channel_0, xop::H264Source::CreateNew()); 
	//session->StartMulticast(); 
	session->AddNotifyConnectedCallback([] (xop::MediaSessionId sessionId, std::string peer_ip, uint16_t peer_port){
		printf("RTSP client connect, ip=%s, port=%hu \n", peer_ip.c_str(), peer_port);
	});
   
	session->AddNotifyDisconnectedCallback([](xop::MediaSessionId sessionId, std::string peer_ip, uint16_t peer_port) {
		printf("RTSP client disconnect, ip=%s, port=%hu \n", peer_ip.c_str(), peer_port);
	});

	xop::MediaSessionId session_id = server->AddSession(session);
      
	H264Frame h264frame(server, suffix.c_str(), L"shared_memory",session_id);

	//std::thread t1(SendFrameThread, server.get(), session_id, &h264_file);
	//t1.detach(); 

	std::cout << "Play URL: " << rtsp_url << std::endl;
	h264frame.Start();
	while (1) {
		xop::Timer::Sleep(100);
	}
	h264frame.Join();
	getchar();
	return 0;
}

完成以后,打开python 服务端,打开rtsp服务端,最后打开vlc查看
rtsp流信息标注yolo,python,pytorch,c++高级技巧,YOLO,前端,rtsp
这样就完成了python端使用pytorch ,yolo 等等共享给c++ 的内存

其中python端的内存共享示例使用如下

import mmap
import contextlib
import time

while True:
    with contextlib.closing(mmap.mmap(-1, 25, tagname='test', access=mmap.ACCESS_READ)) as m:
        s = m.read(1024)#.replace('\x00', '')
        print(s)
    time.sleep(1)

读者可自行完成剩余的代码文章来源地址https://www.toymoban.com/news/detail-815861.html

到了这里,关于yolov8 tracking编码为web 和 rtsp流输出的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包