C#对象二进制序列化优化:位域技术实现极限压缩

这篇具有很好参考价值的文章主要介绍了C#对象二进制序列化优化:位域技术实现极限压缩。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录
  • 1. 引言
  • 2. 优化过程
    • 2.1. 进程对象定义与初步分析
    • 2.2. 排除Json序列化
    • 2.3. 使用BinaryWriter进行二进制序列化
    • 2.4. 数据类型调整
    • 2.5. 再次数据类型调整与位域优化
  • 3. 优化效果与总结

1. 引言

在操作系统中,进程信息对于系统监控和性能分析至关重要。假设我们需要开发一个监控程序,该程序能够捕获当前操作系统的进程信息,并将其高效地传输到其他端(如服务端或监控端)。在这个过程中,如何将捕获到的进程对象转换为二进制数据,并进行优化,以减小数据包的大小,成为了一个关键问题。本文将通过逐步分析,探讨如何使用位域技术对C#对象进行二进制序列化优化。

首先,我们给出了一个进程对象的字段定义示例。为了通过网络(TCP/UDP)传输该对象,我们需要将其转换为二进制格式。在这个过程中,如何做到最小的数据包大小是一个挑战。

字段名 说明 示例
PID 进程ID 10565
Name 进程名称 码界工坊
Publisher 发布者 沙漠尽头的狼
CommandLine 命令行 dotnet CodeWF.Tools.dll
CPU CPU(所有内核的总处理利用率) 2.3%
Memory 内存(进程占用的物理内存) 0.1%
Disk 磁盘(所有物理驱动器的总利用率) 0.1 MB/秒
Network 网络(当前主要网络上的网络利用率 0 Mbps
GPU GPU(所有GPU引擎的最高利用率) 2.2%
GPUEngine GPU引擎 GPU 0 - 3D
PowerUsage 电源使用情况(CPU、磁盘和GPU对功耗的影响)
PowerUsageTrend 电源使用情况趋势(一段时间内CPU、磁盘和GPU对功耗的影响) 非常低
Type 进程类型 应用
Status 进程状态 效率模式

2. 优化过程

2.1. 进程对象定义与初步分析

我们根据字段的示例值确定了每个字段的数据类型。

字段名 数据类型 说明 示例
PID int 进程ID 10565
Name string? 进程名称 码界工坊
Publisher string? 发布者 沙漠尽头的狼
CommandLine string? 命令行 dotnet CodeWF.Tools.dll
CPU string? CPU(所有内核的总处理利用率) 2.3%
Memory string? 内存(进程占用的物理内存) 0.1%
Disk string? 磁盘(所有物理驱动器的总利用率) 0.1 MB/秒
Network string? 网络(当前主要网络上的网络利用率 0 Mbps
GPU string? GPU(所有GPU引擎的最高利用率) 2.2%
GPUEngine string? GPU引擎 GPU 0 - 3D
PowerUsage string? 电源使用情况(CPU、磁盘和GPU对功耗的影响)
PowerUsageTrend string? 电源使用情况趋势(一段时间内CPU、磁盘和GPU对功耗的影响) 非常低
Type string? 进程类型 应用
Status string? 进程状态 效率模式

创建一个C#类SystemProcess表示进程信息:

public class SystemProcess
{
    public int PID { get; set; }
    public string? Name { get; set; }
    public string? Publisher { get; set; }
    public string? CommandLine { get; set; }
    public string? CPU { get; set; }
    public string? Memory { get; set; }
    public string? Disk { get; set; }
    public string? Network { get; set; }
    public string? GPU { get; set; }
    public string? GPUEngine { get; set; }
    public string? PowerUsage { get; set; }
    public string? PowerUsageTrend { get; set; }
    public string? Type { get; set; }
    public string? Status { get; set; }
}

定义测试数据

private SystemProcess _codeWFObject = new SystemProcess()
{
    PID = 10565,
    Name = "码界工坊",
    Publisher = "沙漠尽头的狼",
    CommandLine = "dotnet CodeWF.Tools.dll",
    CPU = "2.3%",
    Memory = "0.1%",
    Disk = "0.1 MB/秒",
    Network = "0 Mbps",
    GPU = "2.2%",
    GPUEngine = "GPU 0 - 3D",
    PowerUsage = "低",
    PowerUsageTrend = "非常低",
    Type = "应用",
    Status = "效率模式"
};

2.2. 排除Json序列化

将对象转为Json字段串,这在Web开发是最常见的,因为简洁,前后端都方便处理:

public class SysteProcessUnitTest
{
    private readonly ITestOutputHelper _testOutputHelper;

    private SystemProcess _codeWFObject // 前面已给出定义,这里省

    public SysteProcessUnitTest(ITestOutputHelper testOutputHelper)
    {
        _testOutputHelper = testOutputHelper;
    }

    /// <summary>
    /// Json序列化大小测试
    /// </summary>
    [Fact]
    public void Test_SerializeJsonData_Success()
    {
        var jsonData = JsonSerializer.Serialize(_codeWFObject);
        _testOutputHelper.WriteLine($"Json长度:{jsonData.Length}");

        var jsonDataBytes = Encoding.UTF8.GetBytes(jsonData);
        _testOutputHelper.WriteLine($"json二进制长度:{jsonDataBytes.Length}");
    }
}
标准输出: 
Json长度:366
json二进制长度:366

尽管Json序列化在Web开发中非常流行,因为它简洁且易于处理,但在TCP/UDP网络传输中,Json序列化可能导致不必要的数据包大小增加。因此,我们排除了Json序列化,并寻找其他更高效的二进制序列化方法。

{"PID":10565,"Name":"\u7801\u754C\u5DE5\u574A","Publisher":"\u6C99\u6F20\u5C3D\u5934\u7684\u72FC","CommandLine":"dotnet CodeWF.Tools.dll","CPU":"2.3%","Memory":"0.1%","Disk":"0.1 MB/\u79D2","Network":"0 Mbps","GPU":"2.2%","GPUEngine":"GPU 0 - 3D","PowerUsage":"\u4F4E","PowerUsageTrend":"\u975E\u5E38\u4F4E","Type":"\u5E94\u7528","Status":"\u6548\u7387\u6A21\u5F0F"}

2.3. 使用BinaryWriter进行二进制序列化

使用站长前面一篇文章写的二进制序列化帮助类SerializeHelper转换,该类使用BinaryWriter将对象转换为二进制数据。

首先,我们使SystemProcess类实现了一个空接口INetObject,并在类上添加了NetHeadAttribute特性。

/// <summary>
/// 网络对象序列化接口
/// </summary>
public interface INetObject
{
}
[NetHead(1, 1)]
public class SystemProcess : INetObject
{
 	// 省略字段定义   
}

然后,我们编写了一个测试方法来验证序列化和反序列化的正确性,并打印了序列化后的二进制数据长度。

/// <summary>
/// 二进制序列化测试
/// </summary>
[Fact]
public void Test_SerializeToBytes_Success()
{
    var buffer = SerializeHelper.SerializeByNative(_codeWFObject, 1);
    _testOutputHelper.WriteLine($"序列化后二进制长度:{buffer.Length}");

    var deserializeObj = SerializeHelper.DeserializeByNative<SystemProcess>(buffer);
    Assert.Equal("码界工坊", deserializeObj.Name);
}
标准输出: 
序列化后二进制长度:152

比Json体积小了一半多(366到152),上面单元测试也测试了数据反序列化后验证数据是否正确,我们就以这个基础继续优化。

2.4. 数据类型调整

为了进一步优化二进制数据的大小,我们对数据类型进行了调整。通过对进程数据示例的分析,我们发现一些字段的数据类型可以更加紧凑地表示。例如,CPU利用率可以只传递数字部分(如2.3),而不需要传递百分号。这种调整可以减小数据包的大小。

字段名 数据类型 说明 示例
PID int 进程ID 10565
Name string? 进程名称 码界工坊
Publisher string? 发布者 沙漠尽头的狼
CommandLine string? 命令行 dotnet CodeWF.Tools.dll
CPU float CPU(所有内核的总处理利用率) 2.3
Memory float 内存(进程占用的物理内存) 0.1
Disk float 磁盘(所有物理驱动器的总利用率) 0.1
Network float 网络(当前主要网络上的网络利用率 0
GPU float GPU(所有GPU引擎的最高利用率) 2.2
GPUEngine byte GPU引擎,0:无,1:GPU 0 - 3D 1
PowerUsage byte 电源使用情况(CPU、磁盘和GPU对功耗的影响),0:非常低,1:低,2:中,3:高,4:非常高 1
PowerUsageTrend byte 电源使用情况趋势(一段时间内CPU、磁盘和GPU对功耗的影响),0:非常低,1:低,2:中,3:高,4:非常高 0
Type byte 进程类型,0:应用,1:后台进程 0
Status byte 进程状态,0:正常运行,1:效率模式,2:挂起 1

修改测试数据定义:

[NetHead(1, 2)]
public class SystemProcess2 : INetObject
{
    public int PID { get; set; }
    public string? Name { get; set; }
    public string? Publisher { get; set; }
    public string? CommandLine { get; set; }
    public float CPU { get; set; }
    public float Memory { get; set; }
    public float Disk { get; set; }
    public float Network { get; set; }
    public float GPU { get; set; }
    public byte GPUEngine { get; set; }
    public byte PowerUsage { get; set; }
    public byte PowerUsageTrend { get; set; }
    public byte Type { get; set; }
    public byte Status { get; set; }
}
/// <summary>
/// 普通优化字段数据类型
/// </summary>
private SystemProcess2 _codeWFObject2 = new SystemProcess2()
{
    PID = 10565,
    Name = "码界工坊",
    Publisher = "沙漠尽头的狼",
    CommandLine = "dotnet CodeWF.Tools.dll",
    CPU = 2.3f,
    Memory = 0.1f,
    Disk = 0.1f,
    Network = 0,
    GPU = 2.2f,
    GPUEngine = 1,
    PowerUsage = 1,
    PowerUsageTrend = 0,
    Type = 0,
    Status = 1
};

添加单元测试如下:

/// <summary>
/// 二进制序列化测试
/// </summary>
[Fact]
public void Test_SerializeToBytes2_Success()
{
    var buffer = SerializeHelper.SerializeByNative(_codeWFObject2, 1);
    _testOutputHelper.WriteLine($"序列化后二进制长度:{buffer.Length}");

    var deserializeObj = SerializeHelper.DeserializeByNative<SystemProcess2>(buffer);
    Assert.Equal("码界工坊", deserializeObj.Name);
    Assert.Equal(2.2f, deserializeObj.GPU);
}

测试结果:

标准输出: 
序列化后二进制长度:99

又优化了50%左右(152到99),爽不爽?继续,还有更爽的。

2.5. 再次数据类型调整与位域优化

更进一步地,我们引入了位域技术。位域允许我们更加精细地控制字段在内存中的布局,从而进一步减小二进制数据的大小。我们重新定义了字段规则,并使用位域来表示一些枚举值字段。通过这种方式,我们能够显著地减小数据包的大小。

看前面一张表,部分字段只是一些枚举值,使用的byte表示,即8位(bit),其中比如进程类型只有2个状态(0:应用,1:后台进程),正好可以用1位即表示;像电源使用情况,无非就是5个状态,用3位可表示全,按这个规则我们重新定义字段规则如下:

字段名 数据类型 说明 示例
PID int 进程ID 10565
Name string? 进程名称 码界工坊
Publisher string? 发布者 沙漠尽头的狼
CommandLine string? 命令行 dotnet CodeWF.Tools.dll
Data byte[8] 固定大小的几个字段,见下表定义

固定字段(Data)的详细说明如下:

字段名 Offset Size 说明 示例
CPU 0 10 CPU(所有内核的总处理利用率),最后一位表示小数位,比如23表示2.3% 23
Memory 10 10 内存(进程占用的物理内存),最后一位表示小数位,比如1表示0.1%,值可根据基本信息计算 1
Disk 20 10 磁盘(所有物理驱动器的总利用率),最后一位表示小数位,比如1表示0.1%,值可根据基本信息计算 1
Network 30 10 网络(当前主要网络上的网络利用率),最后一位表示小数位,比如253表示25.3%,值可根据基本信息计算 0
GPU 40 10 GPU(所有GPU引擎的最高利用率),最后一位表示小数位,比如253表示25.3 22
GPUEngine 50 1 GPU引擎,0:无,1:GPU 0 - 3D 1
PowerUsage 51 3 电源使用情况(CPU、磁盘和GPU对功耗的影响),0:非常低,1:低,2:中,3:高,4:非常高 1
PowerUsageTrend 54 3 电源使用情况趋势(一段时间内CPU、磁盘和GPU对功耗的影响),0:非常低,1:低,2:中,3:高,4:非常高 0
Type 57 1 进程类型,0:应用,1:后台进程 0
Status 58 2 进程状态,0:正常运行,1:效率模式,2:挂起 1

上面这张表是位域规则表,Offset表示字段在Data字节数组中的位置(以bit为单位计算),Size表示字段在Data中占有的大小(同样以bit单位计算),如Memory字段,在Data字节数组中,占据10到20位的空间。

修改类定义如下,注意看代码中的注释:

[NetHead(1, 3)]
public class SystemProcess3 : INetObject
{
    public int PID { get; set; }
    public string? Name { get; set; }
    public string? Publisher { get; set; }
    public string? CommandLine { get; set; }
    private byte[]? _data;
    /// <summary>
    /// 序列化,这是实际需要序列化的数据
    /// </summary>
    public byte[]? Data
    {
        get => _data;
        set
        {
            _data = value;

            // 这是关键:在反序列化将byte转换为对象,方便程序中使用
            _processData = _data?.ToFieldObject<SystemProcessData>();
        }
    }

    private SystemProcessData? _processData;

    /// <summary>
    /// 进程数据,添加NetIgnoreMember在序列化会忽略
    /// </summary>
    [NetIgnoreMember]
    public SystemProcessData? ProcessData
    {
        get => _processData;
        set
        {
            _processData = value;

            // 这里关键:将对象转换为位域
            _data = _processData?.FieldObjectBuffer();
        }
    }
}

public record SystemProcessData
{
    [NetFieldOffset(0, 10)] public short CPU { get; set; }
    [NetFieldOffset(10, 10)] public short Memory { get; set; }
    [NetFieldOffset(20, 10)] public short Disk { get; set; }
    [NetFieldOffset(30, 10)] public short Network { get; set; }
    [NetFieldOffset(40, 10)] public short GPU { get; set; }
    [NetFieldOffset(50, 1)] public byte GPUEngine { get; set; }
    [NetFieldOffset(51, 3)] public byte PowerUsage { get; set; }
    [NetFieldOffset(54, 3)] public byte PowerUsageTrend { get; set; }
    [NetFieldOffset(57, 1)] public byte Type { get; set; }
    [NetFieldOffset(58, 2)] public byte Status { get; set; }
}

添加单元测试如下:

/// <summary>
/// 极限优化字段数据类型
/// </summary>
private SystemProcess3 _codeWFObject3 = new SystemProcess3()
{
    PID = 10565,
    Name = "码界工坊",
    Publisher = "沙漠尽头的狼",
    CommandLine = "dotnet CodeWF.Tools.dll",
    ProcessData = new SystemProcessData()
    {
        CPU = 23,
        Memory = 1,
        Disk = 1,
        Network = 0,
        GPU = 22,
        GPUEngine = 1,
        PowerUsage = 1,
        PowerUsageTrend = 0,
        Type = 0,
        Status = 1
    }
};

/// <summary>
/// 二进制极限序列化测试
/// </summary>
[Fact]
public void Test_SerializeToBytes3_Success()
{
    var buffer = SerializeHelper.SerializeByNative(_codeWFObject3, 1);
    _testOutputHelper.WriteLine($"序列化后二进制长度:{buffer.Length}");

    var deserializeObj = SerializeHelper.DeserializeByNative<SystemProcess3>(buffer);
    Assert.Equal("码界工坊", deserializeObj.Name);
    Assert.Equal(23, deserializeObj.ProcessData.CPU);
    Assert.Equal(1, deserializeObj.ProcessData.PowerUsage);
}

测试输出:

标准输出: 
序列化后二进制长度:86

99又优化到86个字节,13个字节哦,有极限网络环境下非常可观,比如100万数据,那不就是12.4MB了?关于位域序列化和反序列的代码这里不细说了,很枯燥,站长可能也说不清楚,代码长这样:

public partial class SerializeHelper
{
    public static byte[] FieldObjectBuffer<T>(this T obj) where T : class
    {
        var properties = typeof(T).GetProperties();
        var totalSize = 0;

        // 计算总的bit长度
        foreach (var property in properties)
        {
            if (!Attribute.IsDefined(property, typeof(NetFieldOffsetAttribute)))
            {
                continue;
            }

            var offsetAttribute =
                (NetFieldOffsetAttribute)property.GetCustomAttribute(typeof(NetFieldOffsetAttribute))!;
            totalSize = Math.Max(totalSize, offsetAttribute.Offset + offsetAttribute.Size);
        }

        var bufferLength = (int)Math.Ceiling((double)totalSize / 8);
        var buffer = new byte[bufferLength];

        foreach (var property in properties)
        {
            if (!Attribute.IsDefined(property, typeof(NetFieldOffsetAttribute)))
            {
                continue;
            }

            var offsetAttribute =
                (NetFieldOffsetAttribute)property.GetCustomAttribute(typeof(NetFieldOffsetAttribute))!;
            dynamic value = property.GetValue(obj)!; // 使用dynamic类型动态获取属性值
            SetBitValue(ref buffer, value, offsetAttribute.Offset, offsetAttribute.Size);
        }

        return buffer;
    }

    public static T ToFieldObject<T>(this byte[] buffer) where T : class, new()
    {
        var obj = new T();
        var properties = typeof(T).GetProperties();

        foreach (var property in properties)
        {
            if (!Attribute.IsDefined(property, typeof(NetFieldOffsetAttribute)))
            {
                continue;
            }

            var offsetAttribute =
                (NetFieldOffsetAttribute)property.GetCustomAttribute(typeof(NetFieldOffsetAttribute))!;
            dynamic value = GetValueFromBit(buffer, offsetAttribute.Offset, offsetAttribute.Size,
                property.PropertyType);
            property.SetValue(obj, value);
        }

        return obj;
    }

    /// <summary>
    /// 将值按位写入buffer
    /// </summary>
    /// <param name="buffer"></param>
    /// <param name="value"></param>
    /// <param name="offset"></param>
    /// <param name="size"></param>
    private static void SetBitValue(ref byte[] buffer, int value, int offset, int size)
    {
        var mask = (1 << size) - 1;
        buffer[offset / 8] |= (byte)((value & mask) << (offset % 8));
        if (offset % 8 + size > 8)
        {
            buffer[offset / 8 + 1] |= (byte)((value & mask) >> (8 - offset % 8));
        }
    }

    /// <summary>
    /// 从buffer中按位读取值
    /// </summary>
    /// <param name="buffer"></param>
    /// <param name="offset"></param>
    /// <param name="size"></param>
    /// <param name="propertyType"></param>
    /// <returns></returns>
    private static dynamic GetValueFromBit(byte[] buffer, int offset, int size, Type propertyType)
    {
        var mask = (1 << size) - 1;
        var bitValue = (buffer[offset / 8] >> (offset % 8)) & mask;
        if (offset % 8 + size > 8)
        {
            bitValue |= (buffer[offset / 8 + 1] << (8 - offset % 8)) & mask;
        }

        dynamic result = Convert.ChangeType(bitValue, propertyType); // 根据属性类型进行转换
        return result;
    }
}

3. 优化效果与总结

通过逐步优化,我们从最初的Json序列化366字节减小到了使用普通二进制序列化的152字节,再进一步使用位域技术优化到了86字节。这种优化在网络传输中是非常可观的,尤其是在需要传输大量数据的情况下。

本文通过一个示例案例,探讨了C#对象二进制序列化的优化方法。通过使用位域技术,我们实现了对数据包大小的极限压缩,提高了网络传输的效率。这对于开发C/S程序来说是一种乐趣,也是追求极致性能的一种体现。

最后,我们提供了本文测试源码的Github链接,供读者参考和学习。

  • https://github.com/dotnet9/CsharpSocketTest

彩蛋:该仓库有上篇《C#百万对象序列化深度剖析:如何在网络传输中实现速度与体积的完美平衡 (dotnet9.com)》案例代码,也附带了TCP、UDP服务端与客户端联调测试程序哦。文章来源地址https://www.toymoban.com/news/detail-815917.html

到了这里,关于C#对象二进制序列化优化:位域技术实现极限压缩的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • springboot对象序列化自定义序列化注解

    在开发中有时候会遇到一些内容返回时需要翻译,或者一些内容在序列化之前需要特殊处理(脱敏啥的)。 一般对单个属性可以直接用 jackson 的序列化注解对某个属性单独处理 com.fasterxml.jackson.databind.annotation.JsonSerialize(using= xxx.class) 但是直接使用不太灵活,可以进一步引入注

    2024年02月07日
    浏览(48)
  • 4.4. 对象序列化与反序列化

    在本节中,我们将详细讨论Java中的对象序列化与反序列化概念、使用方法以及实例。对象序列化是将对象的状态信息转换为字节流的过程,而反序列化则相反,是将字节流恢复为对象的过程。 4.4.1 为什么需要对象序列化? 对象序列化的主要目的是为了在不同的系统间传输对

    2024年02月07日
    浏览(55)
  • C# 二进制字节流查找函数IndexOf

    /// summary  /// 报告指定的 System.Byte[] 在此实例中的第一个匹配项的索引。  /// /summary  /// param name=\\\"srcBytes\\\"被执行查找的 System.Byte[]。/param  /// param name=\\\"searchBytes\\\"要查找的 System.Byte[]。/param  /// returns如果找到该字节数组,则为 searchBytes 的索引位置;如果未找到该字节数组,则

    2024年02月13日
    浏览(47)
  • 多重背包问题(详解二进制优化原理)

    这道题同样是背包问题,那么它也同样满足三个性质:重叠子问题、最优子结构以及无后效性。那么这样的话,我们依然可以使用动态规划的思路去分析这道题目。那么动态规划的分析主要分为两步:状态转移方程的书写以及循环的设计。 (1)状态表示: 我们在前面的两篇

    2024年02月14日
    浏览(39)
  • Vue前端渲染blob二进制对象图片的方法

    近期做开发,联调接口。接口返回的是一张图片,是对二进制图片处理并渲染,特此记录一下。 本文章是转载文章,原文章:Vue前端处理blob二进制对象图片的方法 接口response是下图 显然,获取到的是一堆乱码,前端需要将其解析出来,百度之后发现解析二进制文档流的写法

    2024年02月15日
    浏览(64)
  • Vue前端处理blob二进制对象图片的方法

    近期在做开发的时候遇到一个问题,前端传递一个参数,后端返回一张图片,前端再将该图片展示出来,由于是第一次处理二进制图片对象,特此记录一下。 首先,已知后端接口无误,传递参数可以正常返回图片    前端调用接口,打印并查看获取到的响应数据:     显然

    2024年02月16日
    浏览(51)
  • 一文了解Java序列化和反序列化:对象的存储与传输

    Java序列化是一项强大而重要的技术,它允许我们将对象转换为字节流,以便在存储、传输和重建时使用。在本文中,我们将深入探讨Java序列化的基本概念、使用方法以及一些应用场景。 Java序列化是指将对象转换为字节流的过程,以便可以将其存储到文件、数据库或在网络上

    2024年02月13日
    浏览(36)
  • SharedPreferences工具类保存List对象,自动完成序列化和反序列化

    以下是一个示例的SharedPreferences工具类,其中包含了setList()和getList()方法,用于将List序列化为JSON字符串并存储到SharedPreferences中,以及从SharedPreferences中获取JSON字符串并反序列化为List对象: 在上述代码中,我们定义了一个SharedPreferencesUtils工具类,其中包含了setList()和getLis

    2024年02月16日
    浏览(40)
  • 序列化实现对象的拷贝

    提到拷贝,大家第一时间想到的可能都是克隆模式的深克隆,因为这个模式在面试中出现的机率非常高,同时实现的方式也比较容易:对象的类实现Cloneable接口并且重写clone()方法即可。但是在实际情况中克隆模式有时候其实并不适合用来拷贝对象,因为如果有很多的实体类都

    2023年04月19日
    浏览(38)
  • RabbitMQ 消息对象通过 Jackson 库消息转化器 序列化/反序列化 天坑!

    目录 1. 报错的背景 2. 问题分析 3. 最佳解决办法 a)使用 RabbitMQ 发送消息时,发送消息的类型为 MapString, Object,map 里面我 put 了一个 String, Long 类型,如下图: b)这里有一个前提:我清楚使用 org.springframework.amqp.rabbit.core.RabbitTemplate 来发送消息到 RabbitMQ 队列时,消息的序列

    2024年04月15日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包