OpenCompass 大模型评测

这篇具有很好参考价值的文章主要介绍了OpenCompass 大模型评测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


随着人工智能技术的快速发展, 大规模预训练自然语言模型成为了研究热点和关注焦点。OpenAI于2018年提出了第一代GPT模型,开辟了自然语言模型生成式预训练的路线。沿着这条路线,随后又陆续发布了GPT-2和GPT-3模型。与此同时,谷歌也探索了不同的大规模预训练模型方案,例如如T5, Flan等。OpenAI在2022年11月发布ChatGPT,展示了强大的问答能力,逻辑推理能力和内容创作能力,将模型提升到了实用水平,改变人们对大模型能力的认知。在2023年4月,OpenAI发布了新升级的GPT-4模型,通过引入多模态能力,进一步拓展了大语言模型的能力边界,朝着通用人工智能更进一步。ChatGPT和GPT-4推出之后,微软凭借强大的产品化能力迅速将其集成进搜索引擎和Office办公套件中,形成了New Bing和 Office Copilot等产品。谷歌也迅速上线了基于自家大语言模型PaLM和PaLM-2的Bard,与OpenAI和微软展开正面竞争。国内的多家企业和研究机构也在开展大模型的技术研发,百度,阿里,华为,商汤,讯飞等都发布了各自的国产语言大模型,清华,复旦等高校也相继发布了GLM, MOSS等模型。

为了准确和公正地评估大模型的能力,国内外机构在大模型评测上开展了大量的尝试和探索。斯坦福大学提出了较为系统的评测框架HELM,从准确性,安全性,鲁棒性和公平性等维度开展模型评测。纽约大学联合谷歌和Meta提出了SuperGLUE评测集,从推理能力,常识理解,问答能力等方面入手,构建了包括8个子任务的大语言模型评测数据集。加州大学伯克利分校提出了MMLU测试集,构建了涵盖高中和大学的多项考试,来评估模型的知识能力和推理能力。谷歌也提出了包含数理科学,编程代码,阅读理解,逻辑推理等子任务的评测集Big-Bench,涵盖200多个子任务,对模型能力进行系统化的评估。在中文评测方面,国内的学术机构也提出了如CLUE,CUGE等评测数据集,从文本分类,阅读理解,逻辑推理等方面评测语言模型的中文能力。

随着大模型的蓬勃发展,如何全面系统地评估大模型的各项能力成为了亟待解决的问题。由于大语言模型和多模态模型的能力强大,应用场景广泛,目前学术界和工业界的评测方案往往只关注模型的部分能力维度,缺少系统化的能力维度框架与评测方案。OpenCompass提供设计一套全面、高效、可拓展的大模型评测方案,对模型能力、性能、安全性等进行全方位的评估。OpenCompass提供分布式自动化的评测系统,支持对(语言/多模态)大模型开展全面系统的能力评估。

关于测评的三个问题

为什么需要测评?

  • 模型选型
  • 模型能力提升
  • 真实应用场景效果评测

我们需要评测什么?

  • 知识、推理、语言
  • 长文本、智能体、多轮对话
  • 情感、认知、价值观

怎么测试大预言模型?

  • 自动化客观评测
  • 人机交互评测
  • 基于大模型的大模型评测

主流大模型评测框架

OpenCompass 大模型评测,MMLab实战训练营,人工智能

OpenCompass能力框架

OpenCompass 大模型评测,MMLab实战训练营,人工智能
OpenCompass 大模型评测,MMLab实战训练营,人工智能

OpenCompass评测流水线设计

OpenCompass 大模型评测,MMLab实战训练营,人工智能文章来源地址https://www.toymoban.com/news/detail-816223.html

到了这里,关于OpenCompass 大模型评测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习实战六步法之训练模型、优化模型、部署模型(七)

    👍【 AI机器学习入门与实战 】目录 🍭 基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类? 🔥 第四篇:【AI机器学习入门与实战】

    2024年02月08日
    浏览(41)
  • 【AI机器学习入门与实战】训练模型、优化模型、部署模型

    👍【 AI机器学习入门与实战 】目录 🍭 基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类? 🔥 第四篇:【AI机器学习入门与实战】

    2024年02月12日
    浏览(52)
  • Azure - 机器学习实战:快速训练、部署模型

    本文将指导你探索 Azure 机器学习服务的主要功能。在这里,你将学习如何创建、注册并发布模型。此教程旨在让你深入了解 Azure 机器学习的基础知识和常用操作。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕

    2024年02月08日
    浏览(49)
  • 使用TensorFlow训练深度学习模型实战(下)

    大家好,本文接TensorFlow训练深度学习模型的上半部分继续进行讲述,下面将介绍有关定义深度学习模型、训练模型和评估模型的内容。 定义深度学习模型 数据准备完成后,下一步是使用TensorFlow搭建神经网络模型,搭建模型有两个选项: 可以使用各种层,包括Dense、Conv2D和

    2024年02月15日
    浏览(36)
  • 使用TensorFlow训练深度学习模型实战(上)

    大家好,尽管大多数关于神经网络的文章都强调数学,而TensorFlow文档则强调使用现成数据集进行快速实现,但将这些资源应用于真实世界数据集是很有挑战性的,很难将数学概念和现成数据集与我的具体用例联系起来。本文旨在提供一个实用的、逐步的教程,介绍如何使用

    2024年02月15日
    浏览(49)
  • 精调训练中文LLaMA模型实战教程,民间羊驼模型

    博文1:本地部署中文LLaMA模型实战教程,民间羊驼模型 博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型 博文3:精调训练中文LLaMA模型实战教程,民间羊驼模型(本博客) 在学习完上篇【博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型】后,我们已经学会了使用

    2024年02月09日
    浏览(50)
  • 模型实战(3)之YOLOv7实例分割、模型训练自己数据集

    下载yolov7实例分割模型: 安装环境

    2023年04月08日
    浏览(42)
  • ChatGLM-6B 模型介绍及训练自己数据集实战

    介绍 ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,结合模型蒸馏技术,实测在2080ti显卡训练中上(INT4)显存占用 6G 左右, 优点 :1.较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,一需求可以进一步

    2024年02月06日
    浏览(54)
  • 大模型落地实战指南:从选择到训练,深度解析显卡选型、模型训练技、模型选择巧及AI未来展望---打造AI应用新篇章

    早期阶段(1950s~1980s) 在1950年代初期,人们开始尝试使用计算机处理自然语言文本。然而,由于当时的计算机处理能力非常有限,很难处理自然语言中的复杂语法和语义。随着技术的发展,自然语言处理领域在20世纪60年代和70年代取得了一些重要的进展。例如,1970年,美国

    2024年04月09日
    浏览(51)
  • 本地训练中文LLaMA模型实战教程,民间羊驼模型,24G显存盘它!

    博文1:本地部署中文LLaMA模型实战教程,民间羊驼模型 博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型(本博客) 博文3:精调训练中文LLaMA模型实战教程,民间羊驼模型 在学习完上篇【1本地部署中文LLaMA模型实战教程,民间羊驼模型】后,我们已经学会了下载模型,

    2024年02月10日
    浏览(71)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包