机器学习:基于支持向量机(SVM)进行人脸识别预测

这篇具有很好参考价值的文章主要介绍了机器学习:基于支持向量机(SVM)进行人脸识别预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习:基于支持向量机(SVM)进行人脸识别预测

作者:i阿极

作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪文章来源地址https://www.toymoban.com/news/detail-816375.html


<
专栏案例:机器学习
机器学习:基于逻辑回归对某银行客户违约预测分析
机器学习:学习k-近邻(KNN)模型建立、使用和评价
机器学习:基于主成分分析(PCA)对数据降维

到了这里,关于机器学习:基于支持向量机(SVM)进行人脸识别预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习——支持向量机SVM

    支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次

    2024年01月17日
    浏览(57)
  • SVM(支持向量机)-机器学习

    支持向量机(Support Vector Machine,SVM) 是一种用于分类和回归分析的监督学习算法 。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维

    2024年02月03日
    浏览(52)
  • 【FPGA教程案例95】机器学习2——基于FPGA的SVM支持向量机二分类系统实现之Verilog编程设计

    FPGA教程目录 ​​​​​​MATLAB教程目录 本课程成果预览(o_check=0表示分类1,o_check=1表示分类2,识别率为98.7%) 目录 1.软件版本

    2023年04月08日
    浏览(60)
  • 机器学习算法:支持向量机(SVM)

    Solem《python计算机视觉编程》、李航《统计学习方法》、周志华《机器学习》 要理解好支持向量机需要较好的数学功底,且能不被公式以及文字绕晕,这里我们就理清楚支持向量机的大体过程。具体的数学计算推导其实已经封装好了,那么理解算法的原理也对我们将来的学习

    2024年02月03日
    浏览(51)
  • 【机器学习】SVM支持向量机模型

     本站原创文章,转载请说明来自 《老饼讲解-机器学习》 ml.bbbdata.com 目录 一. SVM的目标和思想    1.1 SVM硬间隔模型的原始目的 1.2 SVM的直接目标 1.3 什么是支持向量  二. SVM的支持平面的表示方式 2.1 支持面表示方式的初步思路 2.2 初步思路的缺陷与改进 2.3 支持面的最终表示

    2023年04月23日
    浏览(205)
  • 机器学习(六)支持向量机(SVM)

    目录 1.间隔与支持向量 1.1线性可分 1.2支持向量 1.3 最大间隔超平面 2.对偶问题 2.1拉格朗日乘子法 2.2 SMO算法 2.3SMO算法代码实现 3.核函数 4. SVM实例(手写体数字识别) 5.实验总结 支持向量机(SVM) 是有监督学习中最有影响力的机器学习算法之一,一般用于解决二分类问题(

    2024年02月09日
    浏览(57)
  • 【机器学习】支持向量机SVM入门

    相较于之前学习的线性回归和神经网络,支持向量机(Supprot Vector Machine,简称SVM)在拟合复杂的非线性方程的时候拥有更出色的能力,该算法也是十分经典的算法之一。接下来我们需要学习这种算法 首先我们回顾逻辑回归中的经典假设函数,如下图: 对于任意一个实例 (

    2024年02月15日
    浏览(57)
  • 机器学习实战-SVM模型实现人脸识别

    首先进行导包 我们加载sklearn已经帮我们收集好的人脸数据 查看结果: 我们取出其中的数据进行查看: 运行结果: 我们随机选取一个人的图片并通过索引获取名字: 结果展示: 由于原来的数据很大,而且数据量多,我们首先对原始数据进行PCA降维 结果展示: 然后对降维后

    2024年02月04日
    浏览(43)
  • 一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)

    之前所介绍的逻辑回归是基于似然度的分类方法,通过对数据概率进行建模来得到软输出。但这种分类方法其实稍加“繁琐”,因为要 估计数据的概率分布作为中间步骤 。这就像当一个人学习英语时,他只要直接报个班或者自己看书就行了,而不需要先学习诘屈聱牙的拉丁

    2024年02月03日
    浏览(63)
  • 机器学习:Python中如何使用支持向量机(SVM)算法

    (简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的

    2024年02月04日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包