大模型学习与实践笔记(五)

这篇具有很好参考价值的文章主要介绍了大模型学习与实践笔记(五)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、环境配置

1. huggingface 镜像下载 sentence-transformers 开源词向量模型

import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

2.下载 NLTK 相关资源

NLTK(自然语言工具包)是一个用于处理和分析人类语言数据的Python库。它提供了丰富的工具和资源,用于文本处理、语言学特征提取、语言模型训练、语义分析、情感分析等自然语言处理(NLP)任务。

NLTK库具有以下功能和特点:

  1. 文本预处理:NLTK提供了一系列用于文本处理的函数和类,包括分词、词性标注、句法分析、命名实体识别等功能。这些函数和类可用于将原始文本转换为可供分析的结构化数据。

  2. 语料库和语言资源:NLTK包含了大量的语料库和语言资源,用于训练和评估语言模型,以及进行语言学分析和语义理解。这些资源可以帮助研究人员和开发者快速构建和测试自然语言处理算法。

  3. 机器学习和分类:NLTK提供了用于文本分类和信息提取的机器学习算法和工具。这些算法包括朴素贝叶斯分类器、最大熵分类器、支持向量机等,可用于构建和训练文本分类模型。

  4. 语义分析和情感分析:NLTK提供了用于语义分析和情感分析的工具,包括词义消歧、情感极性分析、语义角色标注等。这些工具可用于理解和推断文本的语义含义和情感倾向。

git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages

cd nltk_data

wget -O averaged_perceptron_tagger.zip https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/taggers/averaged_perceptron_tagger.zip

wget -O punkt.zip https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip

二、检索库构建

1.构建知识向量库

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os

# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

# 目标文件夹
tar_dir = [
    "/root/data/InternLM",
    "/root/data/InternLM-XComposer",
    "/root/data/lagent",
    "/root/data/lmdeploy",
    "/root/data/opencompass",
    "/root/data/xtuner"
]

# 加载目标文件
docs = []
for dir_path in tar_dir:
    docs.extend(get_text(dir_path))

# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

运行效果

大模型学习与实践笔记(五),人工智能,学习,笔记,langchain,AIGC,chatgpt

2.将InternLM 接入 LangChain

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

class InternLM_LLM(LLM):
    # 基于本地 InternLM 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: InternLM 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()
        self.model = self.model.eval()
        print("完成本地模型的加载")

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
        - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
        - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
        """
        
        messages = [(system_prompt, '')]
        response, history = self.model.chat(self.tokenizer, prompt , history=messages)
        return response
        
    @property
    def _llm_type(self) -> str:
        return "InternLM"

3.构建检索问答链

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)

from LLM import InternLM_LLM
llm = InternLM_LLM(model_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b")
llm.predict("你是谁")

from langchain.prompts import PromptTemplate

# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""

# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

from langchain.chains import RetrievalQA

qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

# 检索问答链回答效果
question = "什么是InternLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

运行效果:

大模型学习与实践笔记(五),人工智能,学习,笔记,langchain,AIGC,chatgpt

4.gradio 部署

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA

def load_chain():
    # 加载问答链
    # 定义 Embeddings
    embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

    # 向量数据库持久化路径
    persist_directory = 'data_base/vector_db/chroma'

    # 加载数据库
    vectordb = Chroma(
        persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上
        embedding_function=embeddings
    )

    # 加载自定义 LLM
    llm = InternLM_LLM(model_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b")

    # 定义一个 Prompt Template
    template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
    案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
    {context}
    问题: {question}
    有用的回答:"""

    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

    # 运行 chain
    qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})
    
    return qa_chain

class Model_center():
    """
    存储检索问答链的对象 
    """
    def __init__(self):
        # 构造函数,加载检索问答链
        self.chain = load_chain()

    def qa_chain_self_answer(self, question: str, chat_history: list = []):
        """
        调用问答链进行回答
        """
        if question == None or len(question) < 1:
            return "", chat_history
        try:
            chat_history.append(
                (question, self.chain({"query": question})["result"]))
            # 将问答结果直接附加到问答历史中,Gradio 会将其展示出来
            return "", chat_history
        except Exception as e:
            return e, chat_history

import gradio as gr

# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:
    with gr.Row(equal_height=True):   
        with gr.Column(scale=15):
            # 展示的页面标题
            gr.Markdown("""<h1><center>InternLM</center></h1>
                <center>书生浦语</center>
                """)

    with gr.Row():
        with gr.Column(scale=4):
            # 创建一个聊天机器人对象
            chatbot = gr.Chatbot(height=450, show_copy_button=True)
            # 创建一个文本框组件,用于输入 prompt。
            msg = gr.Textbox(label="Prompt/问题")

            with gr.Row():
                # 创建提交按钮。
                db_wo_his_btn = gr.Button("Chat")
            with gr.Row():
                # 创建一个清除按钮,用于清除聊天机器人组件的内容。
                clear = gr.ClearButton(
                    components=[chatbot], value="Clear console")
                
        # 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
        db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[
                            msg, chatbot], outputs=[msg, chatbot])

    gr.Markdown("""提醒:<br>
    1. 初始化数据库时间可能较长,请耐心等待。
    2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>
    """)
gr.close_all()
# 直接启动
demo.launch()

运行效果:

大模型学习与实践笔记(五),人工智能,学习,笔记,langchain,AIGC,chatgpt

大模型学习与实践笔记(五),人工智能,学习,笔记,langchain,AIGC,chatgpt文章来源地址https://www.toymoban.com/news/detail-816809.html

到了这里,关于大模型学习与实践笔记(五)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能实践: 基于T-S 模型的模糊推理

    模糊推理是一种基于行为的仿生推理方法, 主要用来解决带有模糊现象的复杂推理问题。由于模糊现象的普遍存在, 模糊推理系统被广泛的应用。模糊推理系统主要由模糊化、模糊规则库、模糊推理方法以及去模糊化组成, 其基本流程如图1所示。 ■ 图1 模糊推理流程图 传统的

    2024年02月01日
    浏览(50)
  • 边缘人工智能——nanodet模型实践指引,从标注数据集到实现部署文件

            23年11月更新下,用他参赛拿了省级三等奖。         里面提供的很多学习链接都失效了。         首先获得一个合适的nanodet模型版本,配置nanodet适用的环境,然后对网上公开的生数据集进行重新标注,配置nanodet并进行训练,.pth到.onnx的模型转化及简化,编写推理

    2024年02月06日
    浏览(64)
  • 人工智能与机器学习的道路:从理论到实践

    人工智能(Artificial Intelligence, AI)和机器学习(Machine Learning, ML)是当今最热门的技术领域之一,它们正在驱动我们进入一个全新的智能时代。人工智能是一种使计算机能够像人类一样思考、学习和解决问题的技术。机器学习则是人工智能的一个子领域,它涉及到如何让计算机从数

    2024年02月21日
    浏览(46)
  • 人工智能_CPU安装运行ChatGLM大模型_安装清华开源人工智能AI大模型ChatGlm-6B_004---人工智能工作笔记0099

    上一节003节我们安装到最后,本来大模型都可以回答问题了,结果, 5分钟后给出提示,需要GPU,我去..继续看官网,如何配置CPU运行  没办法继续看: 这里是官网可以看到  需要gcc的版本是11.3.0,这里我们先没有去安装,直接试试再说 yum install epel-release yum install gcc-11.3.0 安装的话执行这

    2024年02月21日
    浏览(66)
  • 人工智能讲师AI讲师大模型讲师叶梓介绍及大语言模型技术原理与实践提纲

    叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。 长期负责城市信息化智能平台的建设工作,开展行业数据的智能化应用研发工作,

    2024年02月22日
    浏览(59)
  • Mixtral 8X7B MoE模型基于阿里云人工智能平台PAI实践合集

    作者:熊兮、贺弘、临在 Mixtral 8x7B大模型是Mixtral AI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数

    2024年01月17日
    浏览(50)
  • 人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096

    使用centos安装,注意安装之前,保证系统可以联网,然后执行yum update 先去更新一下系统,可以省掉很多麻烦 20240219_150031 这里我们使用centos系统吧,使用习惯了. ChatGlm首先需要一台个人计算机,或者服务器, 要的算力,训练最多,微调次之,推理需要算力最少 其实很多都支持CPU,但为什么

    2024年02月20日
    浏览(63)
  • 人工智能入门学习笔记(一)

    家人们,好久不见哈!最近在尝试着学习人工智能的相关知识和具体技能呀。说实话,当像我这样的 小白初探人工智能体系 时,总是被很多未知的名词以及茫茫内容所淹没,便去想通过网络学习帮助自己建立正确的人工智能基本概念认知。在此,我便进一步对人工智能体系

    2024年02月02日
    浏览(67)
  • 利用人工智能模型学习Python爬虫

    爬虫是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。 网络爬虫(又称为网页蜘蛛,网络机器人)是其中一种类型。 爬虫可以自动化浏览网络中的信息,当然浏览信息的时候需要按照我们制定的规则进行,这些规则我们称之为网络爬虫算法。 ——使用讯飞星火

    2024年02月09日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包