Drivable 3D Gaussian Avatars 论文笔记

这篇具有很好参考价值的文章主要介绍了Drivable 3D Gaussian Avatars 论文笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

主要的算法架构和贡献是什么?

这篇文章主要使用了两个当前流行的概念,一是3D高斯溅射,二是cage-based deformation。 这篇文章主要是通过多视角视频来实现逼真的人体三维建模 (3D Human Avatar modeling)。 首先大致记录一下对cage-based deformation 的理解。首先这种方法是将一个object 看成是很多 cages, 然后每一个cages 只负责在它里面的点。比如说,把一个3D人体模型看成是一个密集点云, 我们将人体模型拆分成 脸,手,身体,和腿,每一个部位用不同的cages来表示,比如之前表示脸的点,现在都在表示脸的cage里面,当cage发生形变到时候,里面所有的点也会跟着发生形变。 所以cage 可以被看成是一个proxy。

那么在这篇文章里是如何来使用这个概念的呢? 这个方法是如何工作的? 为了提取出关键的语义信息,比如哪里是人的手,哪里是人的身子。 首先会将输入帧进行语义分割,分割的目的是提取出图片当中人的脸,四肢,身子,和衣服,为之后的cage-based deformation 做准备。 文中使用的网络结构是 EfficientNet backbone with PointRend refinement。在得到了语义信息之后,将sementic map 投射到一个 human mesh M 上 去获得 per vertices labels。换句话来说就是通过以上的操作,Human mesh 也间接的被做了segmentation。那么既然是整个Mesh的segmentation, 可见这里肯定是需要用到多张照片的semantic map的同时投射,如果只使用一张照片的话,很难判断其他视角的语义信息是什么样的。(我感觉这里可能成为拓展成单张照片的一个点)。这个3D human mesh 实则是一个低分辨率的LBS Model, 现将这个LBS 模型 fit 到 3D scan里面,然后再把这个LBS模型 fit 到segmentation map里面。 所以现在的这个human mesh 是一个低分辨率的, 有posed的 triangle surface。

为了使用 cage-based deformation, 文中首先将这个低分辨率的人体模型从姿态空间(pose space )转移到 canonical space 里面。 我的理解就是通过一变换将human mesh 变成 T pose。 接下来就是cage-based deformation 很重要的一个步骤,就是把vertices mesh 变成 tetrahedral meshes。 我个人的理解是这里需要一个volume的概念, 因为cage-based deformation的核心其实是将cage看成是coarse proxy,所以在cage里面的点就显得很重要,而一般triangle surface 它很难提供volume的概念,因为一个triangle在空间中只是平面的一个小部分, 而四面体 tetrahedra 本身就可以提供volume的概念。很多需要volume信息的人体三维重建的论文,都会有将triangle surface 变成 tetrahedral surface 的步骤,比如 Pamir, 在求取volume之前,也有将SMPL Mesh 变成 tetrahedral 的步骤。 这篇文章使用的是TetGen 来将unposed 的Mesh变成 tetrahedral meshes。转换出来的Mesh 就包括了三个板块,cages for garments, cages for body, and cages for face。每一个cage的形变是根据之前triangle surface的 LBS weights来的,这也就意味这每一个cage里的点也都是按照LBS weights 来做的形变。 文中将在tetrahedron 中的点定义为如下:
Drivable 3D Gaussian Avatars 论文笔记,读博笔记,3d,论文阅读,深度学习,人体三维重建
b j b_j bj指的就是这个点的重心坐标 (barycentric coordinates) 以上公式,在 tetrahedral surface 根据LBS weights 从canonical space 转到 pose space的时候,依然成立。这就给形变转移(deformation transfer)提供了可能性
Drivable 3D Gaussian Avatars 论文笔记,读博笔记,3d,论文阅读,深度学习,人体三维重建
以上公式中的 E i E_i Ei , E ^ i \hat{E}_{i} E^i 分别表示 形变前后的 tetrahedra, J i J_i Ji表示的是形变梯度(deformation gradient)。这个也是之后引导3D 高斯形变的核心。

如何使用这个deformation 呢?

文中把形变的表示方式和3D高斯溅射联系到了一起。 文中首先对3D高斯进行了初始化,说白了就是将3D 高斯和一些特定的特征输入联系到了一起。 比如文中将 3D 高斯的Mean 表示成了从低分辨率的Mesh 采样的点的位置。 Rotation的前两个axes 和triangle surface联系了起来,最后一个axe和和相对应的法向量(normal)联系了起来. Scale 就是根据 inter-point distance 的距离做的初始化(现在有一些论文是将3D高斯的covariance 拆分成了rotation和scale)。 文中将3D高斯的covariance和之前提到的deformation gradient 通过一下方程联系到了一起:
Drivable 3D Gaussian Avatars 论文笔记,读博笔记,3d,论文阅读,深度学习,人体三维重建
这么做就等于是将之前的形变表示,转移到的高斯上。

最后就是将上述提到的方法在整合到神经网络中。 文中提到了三个主要的结构,都是MLP。第一个 Cage node correction network 它只要控制的是形变,它的输入是pose 还有vertices的positional encoding, 输出的是cage nodes的offset。 听上去很想 deformation field 的感觉。第二是Gaussian correction network 它只要掌管是高斯参数的预估,它的输入是canonical space里面的高斯参数,输出的是对这些参数的矫正(correction)。 最后一个就是 Shading network 主要是预测3D 高斯里的成color 和 opacity, 它的输入是原始的颜色以及view direction。文章来源地址https://www.toymoban.com/news/detail-817165.html

到了这里,关于Drivable 3D Gaussian Avatars 论文笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 3D卷积网络论文阅读笔记

    数据集 BraTS 2020 数据增强方法 • Flipping翻转: 以1/3的概率随机沿着三个轴之一翻转 • Rotation旋转: 从限定范围(0到 15◦或到30◦或到60◦或到90◦)的均匀分布中随机选择角度旋转 • Scale缩放: 通过从范围为±10%或为±20%的均匀分布中随机选择的因子,对每个轴进行缩放 • Br

    2023年04月10日
    浏览(43)
  • 3D Gaussian Splatting:论文原理分析

    标题:3D Gaussian Splatting for Real-Time Radiance Field Rendering 作者:Bernhard Kerbl、Georgios Kopanas、Thomas Leimkühler和George Drettakis,来自法国Inria、Université Côte d\\\'Azur和德国Max-Planck-Institut für Informatik。 发表时间:2023年8月,ACM Transactions on Graphics上,卷号42,编号4 提出了一种名为3D Gaussia

    2024年01月23日
    浏览(49)
  • 经典文献阅读之--Gaussian Splatting SLAM(单目3D高斯溅射重建)

    3D GS在NeRF领域已经掀起了一股浪潮,然后又很快席卷到了SLAM领域,最近已经看到很多3D GS和SLAM结合的开源工作了。将为大家分享帝国理工学院戴森机器人实验最新开源的方案《Gaussian Splatting SLAM》,这也是第一个将3D GS应用到增量3D重建的工作,速度为3 FPS。要想实时从摄像头

    2024年03月10日
    浏览(51)
  • 3D Gaussian Splatting 应用场景及最新进展【附10篇前沿论文和代码】

    CV玩家们,知道 3D高斯 吗?对,就是计算机视觉最近的新宠,在几个月内席卷三维视觉和SLAM领域的3D高斯。不太了解也没关系,我今天就来和同学们一起聊聊这个话题。 3D Gaussian Splatting(3DGS)是用于实时辐射场渲染的 3D 高斯分布描述的一种光栅化技术,具有高质量和实时渲

    2024年02月03日
    浏览(65)
  • 3d gaussian splatting笔记(paper部分翻译)

    本文为3DGS paper的部分翻译。 基于点的𝛼混合和 NeRF 风格的体积渲染本质上共享相同的图像形成模型。 具体来说,颜色 𝐶 由沿射线的体积渲染给出: 其中密度 𝜎、透射率 𝑇 和颜色 c 的样本是沿着射线以间隔 𝛿 𝑖 采集的。 这可以重写为 典型的基于神经点的方法通过

    2024年01月24日
    浏览(45)
  • 学习笔记之——3D Gaussian Splatting源码解读

    之前博客对3DGS进行了学习与调研 学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研-CSDN博客 文章浏览阅读450次。论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作,它的特点在于重建质量高的情况下还能接入传统光栅化,优化速度也快(能够在较少的训练

    2024年01月20日
    浏览(60)
  • 【论文阅读笔记】Sam3d: Segment anything model in volumetric medical images[

    Bui N T, Hoang D H, Tran M T, et al. Sam3d: Segment anything model in volumetric medical images[J]. arXiv preprint arXiv:2309.03493, 2023.【开源】 本文提出的SAM3D模型是针对三维体积医学图像分割的一种新方法。其核心在于将“分割任何事物”(SAM)模型的预训练编码器与一个轻量级的3D解码器相结合。与

    2024年01月20日
    浏览(43)
  • 【读论文】3D Gaussian Splatting for Real-Time Radiance Field Rendering

    What kind of thing is this article going to do (from the abstract and conclusion, try to summarize it in one sentence) To simultaneously satisfy the requirements of efficiency and quality, this article begins by establishing a foundation with sparse points using 3D Gaussian distributions to preserve desirable space. It then progresses to optimizing anisotrop

    2024年04月09日
    浏览(44)
  • 论文阅读笔记《FLEX: Extrinsic Parameters-free Multi-view 3D Human Motion Reconstruction》

    1.简介 在3D人体姿态估计中存在遮挡和模糊问题,使用多相机可能会缓解这些困难,因为不同的视角可以补偿这些遮挡并用于相互一致性。目前的3D人体姿态估计中大多数都是单视角的,有一部分是多视角的,但是他们的方法依赖于相机之间的相对位置,这要用到相机的外参。

    2024年02月04日
    浏览(49)
  • 3D Gaussian Splatting for Real-Time Radiance Field Rendering(论文中代码复现)

    3D Gaussian Splatting for Real-Time Radiance Field Rendering https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ 主要研究方法是使用3D高斯光点绘制(3D Gaussian Splatting)方法进行实时光辐射场渲染。该方法结合了3D高斯场表示和实时可微分渲染器,通过优化3D高斯场的属性和密度控制,实现了高质

    2024年02月03日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包