【论文阅读】Augmented Transformer network for MRI brain tumor segmentation

这篇具有很好参考价值的文章主要介绍了【论文阅读】Augmented Transformer network for MRI brain tumor segmentation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Zhang M, Liu D, Sun Q, et al. Augmented transformer network for MRI brain tumor segmentation[J]. Journal of King Saud University-Computer and Information Sciences, 2024: 101917. [开源]
IF 6.9 SCIE JCI 1.58 Q1 计算机科学2区

【核心思想】

本文提出了一种新型的MRI脑肿瘤分割方法,称为增强型transformer 网络(AugTransU-Net),旨在解决现有transformer 相关的U-Net模型在捕获长程依赖和全局背景方面的局限性。本文的创新之处在于构建了改进的增强型transformer 模块,这些模块结合了标准transformer 块中的增强短路(Augmented Shortcuts),被策略性地放置在分割网络的瓶颈处,以保持特征多样性并增强特征交互和多样性。

【方法】

【论文阅读】Augmented Transformer network for MRI brain tumor segmentation,医学图像分割,论文阅读,transformer,深度学习

  1. 架构设计:AugTransU-Net利用层次化的3D U-Net作为骨干网络,引入了配对注意力模块(paired attention modules)到编码器和解码器层,同时利用改进的transformer 层通过增强短路(Augmented Shortcuts)在瓶颈处。

  2. 特征增强:通过增强短路(Augmented Shortcuts),可以在多头自注意力块中增加额外的分支,以保持特征多样性和增强特征表示。传统的Shortcuts连接只是将输入特征复制到输出,这限制了其增强特征多样性的能力。具有增强Shortcuts方式的 Transformer 模型已被用来避免特征崩溃并产生更多样化的特征。增强短路的公式为:

    Aug ⁡ − S = ∑ i = 1 T T l i ( Z l ; θ l i ) , l ∈ [ 1 , 2 , … , L ] \operatorname{Aug}_{-} S=\sum_{i=1}^{T} T_{l i}\left(Z_{l} ; \theta_{l i}\right), l \in[1,2, \ldots, L] AugS=i=1TTli(Zl;θli),l[1,2,,L]​,

    其中 T l i T_{li} Tli:这表示第 l l l层的第 i i i个Transformer 模块。每个Transformer 模块都在处理输入特征,并且可能有其自己的参数和结构。 T l i T_{li} Tli由线性层和激活函数实现。由于投影 T l i T_{li} Tli 的不同权重矩阵 θ l i \theta_{l i} θli 将输入特征翻译到不同的特征空间中,更多并行的 T T T 增强短路方式有助于丰富特征空间并增强特征的多样性以获得更高的性能。

    Z l Z_l Zl:这是第 l l l层的输入特征。在Transformer 模型中,每一层都会接收到来自前一层的特征作为输入。

    θ l i \theta_{li} θli:这些是第 l l l层第 i i i个Transformer 模块的参数。这些参数在模型训练过程中学习和优化。

    这个公式描述了如何在每一层中通过累加所有Transformer 模块的输出来计算增强短路的输出。这样的设计允许网络在每一层中捕获和融合更加丰富和多样化的特征,有助于提高模型的性能和鲁棒性

    但如果按照上面的公式计算,需要计算很多矩阵乘法,特别是在并行使用更多增强短路时,需要在 Z l Z_l Zl θ l i \theta_{li} θli 之间计算大量的矩阵乘法。受到循环矩阵(Dietrich 和 Newsam, 1997; Kra 和 Simanca, 2012)在傅里叶域上通过快速傅里叶变换(FFT)的效率和有效性的启发,循环矩阵和向量之间的乘积带来了较小的计算复杂度 O ( C ′ log ⁡ C ′ ) \mathcal{O}\left(C^{\prime} \log C^{\prime}\right) O(ClogC),其中 C ′ C^{\prime} C 是循环矩阵的维数。根据 Tang et al. (2021), θ \theta θ 扮演循环矩阵的角色, T ( Z ; θ ) T(Z ; \theta) T(Z;θ) 通过以下方式实现: T ( Z ; θ ) m = ∑ n = 1 N Z n C m n = ∑ n = 1 N IFFT ⁡ ( F F T ( Z n ) ) ∘ F F T ( c m n ) T(Z ; \theta)^{m}=\sum_{n=1}^{N} Z^{n} C^{m n}=\sum_{n=1}^{N} \operatorname{IFFT}\left(F F T\left(Z^{n}\right)\right) \circ F F T\left(\mathbf{c}^{m n}\right) T(Z;θ)m=n=1NZnCmn=n=1NIFFT(FFT(Zn))FFT(cmn)

    【论文阅读】Augmented Transformer network for MRI brain tumor segmentation,医学图像分割,论文阅读,transformer,深度学习

    通过利用FFT和IFFT,我们可以以一种计算效率更高的方式实现复杂的线性变换。

  3. 配对注意力模块:这些模块在网络的低层至高层之间操作,建立空间和通道维度中的长程关系,从而使每一层都能理解整体脑肿瘤结构,并在关键位置捕获语义信息。

    【论文阅读】Augmented Transformer network for MRI brain tumor segmentation,医学图像分割,论文阅读,transformer,深度学习
    • 空间注意力块:此块的主要功能是降低自注意力机制的复杂性,从二次型减少到线性型。这意味着它能够更高效地处理空间特征,减少计算负担,同时仍然捕获长距离的空间关联。
    • 通道注意力块:这部分学习不同通道特征之间的相互依赖性。通过对通道间关系的学习,它能够强化模型对于不同特征重要性的判断和调整。
    • 共享键-查询机制:PA模块基于共享键(keys)-查询(queries)机制在两个注意力块之间进行操作,使用不同的值(value)层来学习互补特征。这种设计使得模块能够更全面地理解输入数据的特征,从而提高特征提取的精度和效率。

【效果】

  • 性能提升:实验结果表明,AugTransU-Net在与baseline(TransBTS)的比较中展现了其有效性和竞争力。模型在BraTS2019-2020验证数据集上分别实现了89.7%/89.8%、78.2%/78.6%、80.4%/81.9%的Dice值,这些值分别用于整个肿瘤(WT)、增强肿瘤(ET)和肿瘤核心(TC)分割。文章来源地址https://www.toymoban.com/news/detail-817166.html

    【论文阅读】Augmented Transformer network for MRI brain tumor segmentation,医学图像分割,论文阅读,transformer,深度学习

到了这里,关于【论文阅读】Augmented Transformer network for MRI brain tumor segmentation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • RAG:Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks 论文阅读

    2020 NeuralPS 文章地址:https://arxiv.org/abs/2005.11401 源码地址:GitHub - huggingface/transformers: 🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.       - 142 RAG 目录 0、背景 1、摘要 2、导言       3、结论 4、模型 5、实验 6、与REALM比较 7、想法         Language Mod

    2024年02月05日
    浏览(27)
  • Low-Light Image Enhancement via Stage-Transformer-Guided Network 论文阅读笔记

    这是TCSVT 2023年的一篇暗图增强的论文 文章的核心思想是,暗图有多种降质因素,单一stage的model难以实现多降质因素的去除,因此需要一个multi-stage的model,文章中设置了4个stage。同时提出了用预设query向量来代表不同的降质因素,对原图提取的key 和value进行注意力的方法。

    2024年02月16日
    浏览(28)
  • [论文阅读]Coordinate Attention for Efficient Mobile Network Design

      最近关于移动网络设计的研究已经证明了通道注意力(例如, the Squeeze-and-Excitation attention)对于提高模型的性能有显著的效果,但它们通常忽略了位置信息,而位置信息对于生成空间选择性注意图非常重要。在本文中,我们提出了一种新的移动网络注意力机制,将位置信息

    2024年02月07日
    浏览(32)
  • 论文阅读 | Cross-Attention Transformer for Video Interpolation

    前言:ACCV2022wrokshop用transformer做插帧的文章,q,kv,来自不同的图像 代码:【here】 传统的插帧方法多用光流,但是光流的局限性在于 第一:它中间会算至少两个 cost volumes,它是四维的,计算量非常大 第二:光流不太好处理遮挡(光流空洞)以及运动的边缘(光流不连续)

    2024年02月09日
    浏览(29)
  • 论文阅读:Multimodal Graph Transformer for Multimodal Question Answering

    论文名 :Multimodal Graph Transformer for Multimodal Question Answering 论文链接 尽管 Transformer模型 在视觉和语言任务中取得了成功,但它们经常隐式地从大量数据中学习知识,而不能直接利用结构化的输入数据。另一方面, 结构化学习方法 ,如集成先验信息的图神经网络(gnn),几乎无法

    2024年02月04日
    浏览(27)
  • 论文笔记:Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting

    论文地址 空间图中一个节点对另一个节点的影响可以跨越多个时间步,分别处理空间维度和时间维度数据的方法对直接建模 跨时空效应 可能是无效的。(在图形建模过程中需要考虑这种跨时空效应) 以前的工作通常使用从距离度量或其他地理联系构建的预定图结构,并使用

    2023年04月08日
    浏览(27)
  • 论文阅读《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》

    就上一篇博客如何写论文、读(分享汇报)论文,在《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》进行实践。 《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》是一篇由Mingxing Tan和Quoc V. Le等人于2019年提出的论文,主要关注卷积神经网络(CNN)的模型缩

    2024年02月03日
    浏览(30)
  • 论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

    这是对FCBFormer的改进,我的关于FCBFormer的论文阅读笔记:论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客 依然是一个双分支结构,总体结构如下: 其中一个是全卷积分支,一个是Transformer分支。 和FCBFormer不同的是,对两个分支都做了一些修改。 本文没有画FCB分支的

    2024年04月24日
    浏览(19)
  • 【论文阅读笔记】PraNet: Parallel Reverse Attention Network for Polyp Segmentation

    PraNet: Parallel Reverse Attention Network for Polyp Segmentation PraNet:用于息肉分割的并行反向注意力网络 2020年发表在MICCAI Paper Code 结肠镜检查是检测结直肠息肉的有效技术,结直肠息肉与结直肠癌高度相关。在临床实践中,从结肠镜图像中分割息肉是非常重要的,因为它为诊断和手术

    2024年01月20日
    浏览(38)
  • Lightening Network for Low-Light Image Enhancement 论文阅读笔记

    这是2022年TIP期刊的一篇有监督暗图增强的文章 网络结构如图所示: LBP的网络结构如下: 有点绕,其基于的理论如下。就是说,普通的暗图增强就只是走下图的L1红箭头,从暗图估计一个亮图。但是其实这个亮图和真实的亮图还是有一些差距,怎么弥补呢,可以再进一步学习

    2024年02月16日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包