机器学习笔记 - 基于自定义数据集 + 3D CNN进行视频分类

这篇具有很好参考价值的文章主要介绍了机器学习笔记 - 基于自定义数据集 + 3D CNN进行视频分类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简述

        这里主要介绍了基于自定义动作识别数据集训练用于视频分类的 3D 卷积神经网络 (CNN) 。3D CNN 使用三维滤波器来执行卷积。内核能够在三个方向上滑动,而在 2D CNN 中它可以在二维上滑动。

        这里的模型主要基于D. Tran 等人2017年的论文“动作识别的时空卷积研究”。

https://arxiv.org/abs/1711.11248v3https://arxiv.org/abs/1711.11248v3

1、模型结构

机器学习笔记 - 基于自定义数据集 + 3D CNN进行视频分类,深度学习从入门到精通,机器学习,深度学习,3D CNN,视频分类,动作识别

2、数据集

        数据集使用的是别人贡献的开源数据集,感谢所有愿意开源的兄弟。文章来源地址https://www.toymoban.com/news/detail-817351.html

到了这里,关于机器学习笔记 - 基于自定义数据集 + 3D CNN进行视频分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【使用OpenCV进行视频人脸检测】------机器学习(附完整代码和数据集)

    上篇文章介绍了OpenCV进行照片人脸检测,今天学习的是OpenCV进行视频人脸检测,所有的参考博文、文献、视频、代码都会在文末附上链接或文件压缩包。 本文的目录如下: detectMultiScale()函数 核心部分用到的同样是detectMultiScale(),具体参数解释见上篇博客OpenCV进行照片人脸检

    2023年04月08日
    浏览(33)
  • 机器学习笔记 - 基于Scikit-Learn的各种分类器进行分类并比较

            scikit-learn是基于python语言构建机器学习应用程序的最佳库之一。简单易用,并且它有很多示例和教程。除了监督式机器学习(分类和回归)外,它还可用于聚类、降维、特征提取和工程以及数据预处理。该接口在所有这些方法上都是一致的,因此它不仅易于使用,

    2024年02月09日
    浏览(61)
  • 基于深度学习的3D城市模型增强【Mask R-CNN】

    在这篇文章中,我们描述了一个为阿姆斯特丹 3D 城市模型自动添加门窗的系统(可以在这里访问)。 计算机视觉用于从城市全景图像中提取有关门窗位置的信息。 由于这种类型的街道级图像广泛可用,因此该方法可用于较大的地理区域。 推荐:用 NSDT编辑器 快速搭建可编程

    2024年02月13日
    浏览(40)
  • 计算机竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 基于CNN实现谣言检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不

    2024年02月12日
    浏览(57)
  • 【机器学习】基于卷积神经网络 CNN 的猫狗分类问题

    卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。 顾名思义,就是将卷积与前馈神经网络结合,所衍生出来的一种深度学习算法。 卷积神经网络CNN的结构图

    2024年02月17日
    浏览(43)
  • 【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵,网络攻击,流量异常

    【深度学习】用神经网络进行入侵检测,NSL-KDD数据集,用网络连接特征判断是否是网络入侵。 NSL-KDD数据集,有dos,u2r,r21,probe等类型的攻击,和普通的正常的流量,即是有五个类别: 1、Normal:正常记录 2、DOS:拒绝服务攻击 3、PROBE:监视和其他探测活动 4、R2L:来自远程机器

    2024年04月25日
    浏览(44)
  • 【人工智能与机器学习】基于卷积神经网络CNN的猫狗识别

    很巧,笔者在几月前的计算机设计大赛作品设计中也采用了猫狗识别,目前已推国赛评选中 但当时所使用的方法与本次作业要求不太一致,又重新做了一遍,下文将以本次作业要求为主,介绍CNN卷积神经网络实现猫狗识别 猫狗识别和狗品种识别是计算机视觉领域中一个重要

    2024年02月13日
    浏览(48)
  • 机器学习与深度学习——自定义函数进行线性回归模型

    目的与要求 1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型

    2024年02月13日
    浏览(41)
  • 【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 算例1 2.2 算例2 2.3 算例3 2.4 算例4

    2024年02月16日
    浏览(46)
  • 基于Pytorch使用cnn对Omniglot数据集进行识别(附源代码)

      目录 实验目的 实验原理 CNN: SVM: 实验步骤和程序流程 CNN: SVM: 实验结果 CNN:最终准确率达到88.3%,loss为0.0825 SVM: 评价分析 附1:参考文献 最后附上源代码:   Omniglot数据集介绍   简介:Omniglot 数据集包含来⾃50 个不同字⺟的 1623 个不同⼿写字符,如下图所示。     数据规模

    2024年02月02日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包