主要记录concat,stack,unstack和split相关操作的作用
import tensorflow as tf
import numpy as np
tf.__version__
#concat对某个维度进行连接
#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩
tensor0 = tf.ones([4,35,8])
tensor1 = tf.ones([2,35,8])
#用concat将第0个维度(班级,axis=0)连接起来,结果是一个[6,35,8]的tensor
#表示6个班级35名同学8门成绩的数据
tensor = tf.concat([tensor0, tensor1], axis=0)
print("=========>tf.concat([tensor0, tensor1], axis=0).shape:", tensor.shape)
#在同学维度进行合并,第1个维度,axis=1
#假设下面的tensor0和tensor1分别表示4个班级32名同学的8门成绩和4个班级3个同学8门成绩
tensor0 = tf.ones([4,32,8])
tensor1 = tf.ones([4,3,8])
#concat合并第一个维度,可以理解为,tensor0先收集到了32名同学的8门成绩
#然后补考的3名同学成绩放到了tensor1上,通过concat进行汇总
tensor = tf.concat([tensor0, tensor1], axis=1)
print("=========>tf.concat([tensor0, tensor1], axis=1).shape:", tensor.shape)
#concat对于维度有要求,对于不是指定axis的维度要相等才能concat
#一个[4,35,8]的tensor和一个[3,15,8]的tensor无法进行concat
#concat对某个维度进行连接
#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩
tensor0 = tf.ones([4,35,8])
tensor1 = tf.ones([2,35,8])
#用concat将第0个维度(班级,axis=0)连接起来,结果是一个[6,35,8]的tensor
#表示6个班级35名同学8门成绩的数据
tensor = tf.concat([tensor0, tensor1], axis=0)
print("=========>tf.concat([tensor0, tensor1], axis=0).shape:", tensor.shape)
#在同学维度进行合并,第1个维度,axis=1
#假设下面的tensor0和tensor1分别表示4个班级32名同学的8门成绩和4个班级3个同学8门成绩
tensor0 = tf.ones([4,32,8])
tensor1 = tf.ones([4,3,8])
#concat合并第一个维度,可以理解为,tensor0先收集到了32名同学的8门成绩
#然后补考的3名同学成绩放到了tensor1上,通过concat进行汇总
tensor = tf.concat([tensor0, tensor1], axis=1)
print("=========>tf.concat([tensor0, tensor1], axis=1).shape:", tensor.shape)
#concat对于维度有要求,对于不是指定axis的维度要相等才能concat
#一个[4,35,8]的tensor和一个[3,15,8]的tensor无法进行concat
#unstack和stack操作相反,会对指定维度进行拆分
tensor = tf.ones([3,4,35,8])
#拆分出3个[4,35,8]的tensor
splited = tf.unstack(tensor, axis=0)
print("==========>tf.unstack(tensor, axis=0).shape:", splited[0].shape, splited[1].shape, splited[2].shape)
#拆分出8个[3,4,35]的tensor
splited = tf.unstack(tensor, axis=3)
print("==========>tf.unstack(tensor, axis=3).shape:",
splited[0].shape, splited[1].shape, splited[2].shape,
splited[3].shape, splited[4].shape, splited[5].shape,
splited[5].shape, splited[6].shape, splited[7].shape)
#拆分出4个[3,35,8]的tensor
splited = tf.unstack(tensor, axis=1)
print("==========>tf.unstack(tensor, axis=1).shape:", splited[0].shape, splited[1].shape, splited[2].shape, splited[3].shape)
#unstack会固定打散指定维度为1
#split则可以指定这个维度划分的比例,通过num_or_size_splits指定
#看个例子就明白了
tensor = tf.ones([2,4,35,8])
#第3个维度划分为2个4维的两个tensor([2,4,35,4]) --- 8 / 2(num_of_size_splits) = 4
splited = tf.split(tensor, axis=3, num_or_size_splits=2)
print("==========>split(tensor, axis=3, num_or_size_splits=2).shape:", splited[0].shape, splited[1].shape)
#将第3个维度按照2,2,4的比例划分,得到3个tensor
splited = tf.split(tensor, axis=3, num_or_size_splits=[2,2,4])
print("==========>split(tensor, axis=3, num_or_size_splits=2).shape:", splited[0].shape, splited[1].shape, splited[2].shape)
运行结果:
文章来源:https://www.toymoban.com/news/detail-817357.html
文章来源地址https://www.toymoban.com/news/detail-817357.html
到了这里,关于Tensorflow2.0笔记 - tensor的合并和分割的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!