[数据结构 - C++] 红黑树RBTree

这篇具有很好参考价值的文章主要介绍了[数据结构 - C++] 红黑树RBTree。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

1、前言

我们在学习了二叉搜索树后,在它的基础上又学习了AVL树,知道了AVL树是靠平衡因子来调节左右高度差,从而让树变得平衡的。本篇我们再来学习一个依靠另一种平衡规则来控制的二叉搜索树——红黑树。

2、红黑树的概念

红黑树,是一种二叉搜索树但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

3、红黑树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
红色不能连续,黑色可以连续
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

概念中,说到没有一条路径会比其他路径长出俩倍,性质3与性质4相互牵制就可以保证这一点。

4、红黑树节点的定义

我们定义节点依然是三叉链,与AVL树不同的是红黑树没有平衡因子,而是保存一个代表节点颜色的属性。

enum Color
{
	RED,
	BLACK
};

template <class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Color _col;

	RBTreeNode(const pair<K, V>& _kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{}
};

这里我们定义的红黑树节点,颜色默认给的红色,但是这里是给红色还是黑色合适呢?
当插入的时候,我们新插入的节点颜色是黑色时,就会破坏性质3,新插入节点的这条路径的黑色节点数一定会比其他路径的黑色节点多一个,影响整棵树。
如果是红色,那插入的时候她的父节点可能是黑色,没有影响,可能是红色,那么就会出现连续的红色节点,但是它只会影响这一条路径。
这两种颜色插入,黑色是一定会影响,红色是可能会影响的,且黑色影响整棵树,红色影响它这一条路径,两害取其轻,我们选择红色,调整的话也比较容易调整。下面我们就来尝试看插入怎么写:

5、红黑树的插入Insert

红黑树的插入是在二叉搜索树插入基础上来修改的,因此大的方向分两步走:
1、找到插入的位置;
2、插入节点后,根据性质来调节平衡。

bool Insert(const pair<K, V>& kv)
{
    if (nullptr == _root)
    {
        _root = new Node(data);
        _root->_col = BLACK; // 性质2:根节点是黑色
        return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;

    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }
    // 新增插入节点是红色只会影响父节点,如果是黑色影响所有路径
    // 所以 new 的节点为红色
    cur = new Node(kv);
    cur->_col = RED;
    if (parent->_kv.first < kv.first)
    {
        parent->_right = cur;
        cur->_parent = parent;
    }
    else
    {
        parent->_left = cur;
        cur->_parent = parent;
    }
	// 维护处理 ...
}

当来到这块时,已经插入了,要做的就是按照性质来检查和维护这棵树了。
1、当父亲是黑色,那么就不用维护,就结束了;
2、当父亲是红色,那么就违反了性质3(不能存在连续的红色节点),这时就需要调整了,调整也是要分情况讨论(约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点)。
情况一:cur是红色,p为红色,g为黑色,u存在且为红色
这里看到的这棵树可能是完整的,也可能是子树:
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

如果是完整的树,那么改完之后,需要将g的颜色改为黑色。
如果g是子树,那么g就有父节点,这时g的颜色改为红色,父节点颜色可能也是红色,这时急需要继续向上调整了。
将p,u改为黑,g改为红,然后把g当作cur,继续向上调整。
情况二:cur是红色,p为红色,g为黑色,u不存在/u存在且为黑色
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

这里u有两种颜色,我们分开讨论:

  • 如果u不存在,那么cur一定是新增。因为u不存在g也是有一条右边路径的,这条路径就两个黑色节点空结点也是黑色,那么c就不存在,a、b都不存在,如果存在就是黑色节点,那么就打破了性质3。
  • 如果存在且为黑,那么这个抽象图就不全。因为父节是红色,叔叔为黑色,每条路径的黑色节点个数要相同,因此推测出cur之前应该是黑色,那么a、b就应该是红色,新增节点在a/b的孩子位置。
    整体就为下图:
    [数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

它会先经过情况一的调整方式,调整完变为情况二这样,然后再继续调整:
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

此时,就 以g为基点先右旋,然后将父节点颜色变为黑色,祖父节点颜色变为红色。(旋转不清楚的同学可以看看AVL树的)
情况三:cur是红色,p为红色,g为黑色,u不存在/u存在且为黑色
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

  • u不存在,cur是新增。因为每条路径的黑色节点个数相同,u不存在,u这条路径上两个黑色节点空结点也是黑色),推测出a、b、c都是不存在的,那么cur就是新增,如果存在只能是黑色节点,那么就打破了性质3。
  • 如果存在且为黑,这个抽象图依然是不完整的。因为父节点是红色,叔叔为黑色,每条路径的黑色节点相同,因此推测出a为黑色,cur之前也应该为黑色,那么b、c就应该是红色,新增节点在b/c的孩子位置。

图跟情况二中,u存在且为黑差不多:
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

会先经过情况一调整,变为情况三这样,然后进行调整:
[数据结构 - C++] 红黑树RBTree,数据结构,C++,数据结构,c++

此时,先以p为基点左旋,再以g为基点右旋,然后将cur节点变为黑色,祖父节点变为红色。
如果新增的父节点在右,叔叔节点在左,那么也是分以上三种情况,调整方式也是对应三种方式差不多,这里就不过多赘述,直接上代码:

bool Insert(const pair<K, V>& kv)
{
    if (nullptr == _root)
    {
        _root = new Node(data);
        _root->_col = BLACK; // 性质2:根节点是黑色
        return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;

    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }
    
    // 新增插入节点是红色只会影响父节点,如果是黑色影响所有路径
    // 所以 new 的节点为红色
    cur = new Node(kv);
    cur->_col = RED;
    if (parent->_kv.first < kv.first)
    {
        parent->_right = cur;
        cur->_parent = parent;
    }
    else
    {
        parent->_left = cur;
        cur->_parent = parent;
    }

    // 不断向上调整的,所以得用while
    while (parent && parent->_col == RED)
    {
        // 父节点是祖父节点的左
        //      g
        //    p   u
        //  c 
        Node* grandfather = parent->_parent;
        // 1、父节点在祖父的左,即叔叔在右
        if (parent == grandfather->_left)
        {
            Node* uncle = grandfather->_right;
            // 1.1 叔叔存在并且为红
            if (uncle && uncle->_col == RED)
            {
                // 变色
                parent->_col = uncle->_col = BLACK;
                grandfather->_col = RED;

                // 向上调整
                cur = grandfather;
                parent = cur->_parent;
            }
            // 1.2 叔叔不存在 / 叔叔存在且为黑,处理方法一样
            else
            {
                if (cur == parent->_left) // 左边高的情况
                {
                    // 右单旋
                    //     g
                    //   p   u
                    // c
                    RotateR(grandfather);
                    parent->_col = BLACK;
                    grandfather->_col = RED;
                }
                else // 左边高右边高的情况
                {
                    // 双旋
                    //     g
                    //  p     u
                    //    c
                    RotateL(parent);
                    RotateR(grandfather);
                    cur->_col = BLACK;
                    grandfather->_col = RED;
                }
                // 此时不用祖父位置为黑色不用在网上调整了
                break;
            }
        }
        // 2、父节点在祖父的右,即叔叔在祖父的左
        else // parent == grandfather->_right
        {
            //     g
            //   u   p
            //         c
            Node* uncle = grandfather->_left;
            // 2.1 叔叔存在且叔叔为红色
            if (uncle && uncle->_col == RED)
            {
                // 变色
                parent->_col = uncle->_col = BLACK;
                grandfather->_col = RED;

                // 向上调整
                cur = grandfather;
                parent = cur->_parent;
            }
            // 2.2 叔叔不存在 / 叔叔存在且颜色为黑,处理方法一样
            else
            {
                if (cur == parent->_right) // 右边高的情况
                {
                    //     g
                    //   u   p
                    //         c
                    RotateL(grandfather);
                    parent->_col = BLACK;
                    grandfather->_col = RED;
                }
                else // 右边高,左边高
                {
                    //     g
                    //  u     p
                    //      c
                    RotateR(parent);
                    RotateL(grandfather);
                    cur->_col = BLACK;
                    grandfather->_col = RED;
                }
                // 此时不用祖父位置为黑色不用在网上调整了
                break;
            }
        }
    }
    
    // 最后将根节点变为黑色
    _root->_col = BLACK;
    return true;
}

// 左单旋
void RotateL(Node* parent)
{
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    Node* parentParent = parent->_parent;

    parent->_right = subRL;
    if (subRL)
        subRL->_parent = parent;
    subR->_left = parent;
    parent->_parent = subR;

    if (_root == parent) // 父节点就是根节点
    {
        _root = subR;
        subR->_parent = nullptr;
    }
    else // 子树情况
    {
        if (parentParent->_left == parent)
        {
            parentParent->_left = subR;
        }
        else
        {
            parentParent->_right = subR;
        }
        subR->_parent = parentParent;
    }
}

// 右单旋
void RotateR(Node* parent)
{
    Node* parentParent = parent->_parent;
    Node* subL = parent->_left;
    Node* subLR = subL->_right;

    parent->_left = subLR;
    if (subLR)
        subLR->_parent = parent;
    subL->_right = parent;
    parent->_parent = subL;

    if (_root == parent) // 父节点是根节点
    {
        _root = subL;
        subL->_parent = nullptr;
    }
    else // 子树情况
    {
        if (parentParent->_left == parent)
        {
            parentParent->_left = subL;
        }
        else
        {
            parentParent->_right = subL;
        }
        subL->_parent = parentParent;
    }
}

6、红黑树的验证

红色树的验证本质就是验证两方面:
1、是否为二叉搜索树(中序遍历是否有序);
2、是否满足5条性质。

void _InOrder(Node* pRoot)
{
    if (pRoot == nullptr)
        return;

    _InOrder(pRoot->_left);
    cout << pRoot->_data << " ";
    _InOrder(pRoot->_right);
}

bool IsBalance()
{
    if (_root == nullptr) return true;

    if (_root->_col == RED) return false;

    // 参考值
    int refValue = 0;
    Node* cur = _root;
    while (cur)
    {
        if (cur->_col == BLACK) refValue++;

        cur = cur->_left;
    }
    // 检查每条路径黑色节点个数
    // 思路:以上面参考值为主,对比每条路径的黑色节点个数
    // 当走到空就说明该路径走完了,那么这个过程中记录下黑色节点个数,到空时与refValue对比
    // 这里传进去blacknum只能是传值,这样就不会影响上一层的blacknum了
    int blacknum = 0;
    // 检查连续红色节点与每条路径黑色节点个数
    return Check(_root, blacknum, refValue);
}
bool Check(Node* root, int blacknum, const int& refValue)
{
    if (root == nullptr)
    {
        if (blacknum != refValue)
        {
            cout << "存在黑色节点不相等的路径" << endl;
            return false;
        }

        return true;
    }

    // 反向检查,查看当前与父结点为红色(当前节点为红色就说明不是根节点,即存在父节点)
    if (root->_col == RED && root->_parent->_col == RED)
    {
        cout << "有连续的红色节点" << endl;
        return false;
    }

    if (root->_col == BLACK) blacknum++;

    return Check(root->_left, blacknum, refValue)
        && Check(root->_right, blacknum, refValue);
}

7、红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log_2 N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。文章来源地址https://www.toymoban.com/news/detail-817663.html

附录:

enum Color
{
	RED,
	BLACK
};

template <class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Color _col;

	RBTreeNode(const pair<K, V>& _kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{}
};

template <class K, class V>
class RBTree
{
	typedef RBTreeNode<K,V> Node;
public:
	bool Insert(const pair<K, V>& kv)
    {
        if (nullptr == _root)
        {
            _root = new Node(data);
            _root->_col = BLACK; // 性质2:根节点是黑色
            return true;
        }
    
        Node* parent = nullptr;
        Node* cur = _root;
    
        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }
        
        // 新增插入节点是红色只会影响父节点,如果是黑色影响所有路径
        // 所以 new 的节点为红色
        cur = new Node(kv);
        cur->_col = RED;
        if (parent->_kv.first < kv.first)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }
    
        // 不断向上调整的,所以得用while
        while (parent && parent->_col == RED)
        {
            // 父节点是祖父节点的左
            //      g
            //    p   u
            //  c 
            Node* grandfather = parent->_parent;
            // 1、父节点在祖父的左,即叔叔在右
            if (parent == grandfather->_left)
            {
                Node* uncle = grandfather->_right;
                // 1.1 叔叔存在并且为红
                if (uncle && uncle->_col == RED)
                {
                    // 变色
                    parent->_col = uncle->_col = BLACK;
                    grandfather->_col = RED;
    
                    // 向上调整
                    cur = grandfather;
                    parent = cur->_parent;
                }
                // 1.2 叔叔不存在 / 叔叔存在且为黑,处理方法一样
                else
                {
                    if (cur == parent->_left) // 左边高的情况
                    {
                        // 右单旋
                        //     g
                        //   p   u
                        // c
                        RotateR(grandfather);
                        parent->_col = BLACK;
                        grandfather->_col = RED;
                    }
                    else // 左边高右边高的情况
                    {
                        // 双旋
                        //     g
                        //  p     u
                        //    c
                        RotateL(parent);
                        RotateR(grandfather);
                        cur->_col = BLACK;
                        grandfather->_col = RED;
                    }
                    // 此时不用祖父位置为黑色不用在网上调整了
                    break;
                }
            }
            // 2、父节点在祖父的右,即叔叔在祖父的左
            else // parent == grandfather->_right
            {
                //     g
                //   u   p
                //         c
                Node* uncle = grandfather->_left;
                // 2.1 叔叔存在且叔叔为红色
                if (uncle && uncle->_col == RED)
                {
                    // 变色
                    parent->_col = uncle->_col = BLACK;
                    grandfather->_col = RED;
    
                    // 向上调整
                    cur = grandfather;
                    parent = cur->_parent;
                }
                // 2.2 叔叔不存在 / 叔叔存在且颜色为黑,处理方法一样
                else
                {
                    if (cur == parent->_right) // 右边高的情况
                    {
                        //     g
                        //   u   p
                        //         c
                        RotateL(grandfather);
                        parent->_col = BLACK;
                        grandfather->_col = RED;
                    }
                    else // 右边高,左边高
                    {
                        //     g
                        //  u     p
                        //      c
                        RotateR(parent);
                        RotateL(grandfather);
                        cur->_col = BLACK;
                        grandfather->_col = RED;
                    }
                    // 此时不用祖父位置为黑色不用在网上调整了
                    break;
                }
            }
        }
        
        // 最后将根节点变为黑色
        _root->_col = BLACK;
        return true;
    }
    
	bool Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return true;
	}

	bool IsBalance()
	{
		if (_root == nullptr) return true;

		if (_root->_col == RED) return false;

		// 参考值
		int refValue = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK) refValue++;

			cur = cur->_left;
		}
		// 检查每条路径黑色节点个数
		// 思路:以上面参考值为主,对比每条路径的黑色节点个数
		// 当走到空就说明该路径走完了,那么这个过程中记录下黑色节点个数,到空时与refValue对比
		// 这里传进去blacknum只能是传值,这样就不会影响上一层的blacknum了
		int blacknum = 0;
		// 检查连续红色节点与每条路径黑色节点个数
		return Check(_root, blacknum, refValue);
	}

	size_t Height()
	{
		return _Height(_root);
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	bool Check(Node* root, int blacknum, const int& refValue)
	{
		if (root == nullptr)
		{
			if (blacknum != refValue)
			{
				cout << "存在黑色节点不相等的路径" << endl;
				return false;
			}

			return true;
		}

		// 反向检查,查看当前与父结点为红色(当前节点为红色就说明不是根节点,即存在父节点)
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "有连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK) blacknum++;

		return Check(root->_left, blacknum, refValue)
			&& Check(root->_right, blacknum, refValue);
	}

	// 左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* parentParent = parent->_parent;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		subR->_left = parent;
		parent->_parent = subR;

		if (_root == parent) // 父节点就是根节点
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else // 子树情况
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	// 右单旋
	void RotateR(Node* parent)
	{
		Node* parentParent = parent->_parent;
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent) // 父节点是根节点
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else // 子树情况
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}

	void _InOrder(Node* pRoot)
	{
		if (pRoot == nullptr)
			return;

		_InOrder(pRoot->_left);
		cout << pRoot->_data << " ";
		_InOrder(pRoot->_right);
	}

	size_t _Height(Node* pRoot)
	{
		if (pRoot == nullptr)
			return 0;

		int leftHeight = _Height(pRoot->_left);
		int rightHeight = _Height(pRoot->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

private:
	Node* _root = nullptr;
};

到了这里,关于[数据结构 - C++] 红黑树RBTree的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 『 C++ 』红黑树RBTree详解 ( 万字 )

    红黑树是一棵较为复杂的树; 其与AVL树相同,也为一棵平衡搜索二叉树; 其与AVL树不同的是,在AVL树中依靠平衡因子bf(Balance Factor)来保证树的结构始终保持为一个高度平衡的状态(每个节点的左右子树高度差不超过1); 而对于红黑树来说,其在节点当中存储了一个颜色,颜色不为红则为

    2024年01月18日
    浏览(42)
  • 【高阶数据结构】红黑树 {概念及性质;红黑树的结构;红黑树的实现;红黑树插入操作详细解释;红黑树的验证}

    红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。 AVL树 VS 红黑树 红黑树是

    2024年02月09日
    浏览(49)
  • 数据结构 | 红黑树

    节点的左边比节点的值小,右边比节点的值大。 节点要么是 红色 ,要么是 黑色 根节点 是黑色 叶子节点都是黑色的空节点 红黑树中红色节点的子节点都是黑色 从任一节点到叶子节点的所有路径都包含相同数目的黑色节点 在添加或者删除节点的时候,如果不满足这些性质会

    2024年01月21日
    浏览(43)
  • 数据结构——红黑树

    目录 概念 性质 结点的定义  插入 调整 当p是g的左孩子时 当p为g的右孩子时 插入完整代码 红黑树的检测 红黑树完整代码(包括测试数据)   红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RED或BLACK。 通过对任何一条从根到叶子的路径

    2023年04月09日
    浏览(45)
  • 【数据结构】红黑树

    🐱作者:一只大喵咪1201 🐱专栏:《数据结构与算法》 🔥格言: 你只管努力,剩下的交给时间! 在学习AVL树的时候,我们知道,当修改AVL树的结构(插入,删除)时,会通过旋转来保证平衡因子不超过1,所以频繁的修改结构会导致效率低下,今天我们学习的红黑树就完美解

    2023年04月17日
    浏览(48)
  • [数据结构]-红黑树

    前言 作者 : 小蜗牛向前冲 名言: 我可以接受失败,但我不能接受放弃   如果觉的博主的文章还不错的话,还请 点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、红黑树的基本知识  1、红黑树的概念 2、性质  二、红黑树的模拟实

    2024年02月04日
    浏览(45)
  • 【数据结构-树】红黑树

    💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老 导航 檀越剑指大厂系列:全面总

    2024年02月07日
    浏览(44)
  • 红黑树数据结构

    现在JAVASE中HashMap中底层源码是由数组+链表+红黑树进行设计的,然后很多地方也是用到红黑树,这里单独对红黑树数据结构进行简单的介绍。 目录 红黑树概念 红黑树的性质 自平衡规则 代码   红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可

    2024年02月01日
    浏览(40)
  • 数据结构入门-11-红黑树

    史上最负盛名的平衡二叉树–红黑树,但其实就是2-3树的一种实现 也是BST,每一个节点都有颜色 性质 看 后面推导出来的结论 2-3树 :和红黑树是等价的 满足BST的基本性质,但不是一种二叉树 有两种节点: 2-3 绝对平衡:根节点到叶子节点 一定相同 2.3.1 如何维护绝对平衡

    2023年04月17日
    浏览(41)
  • 【数据结构】红黑树详解

    目录 前言: 红黑树的概念: 红黑树的性质: 红黑树节点的定义: 红黑树的插入: 情况1:cur为红,p为红,g为黑,u存在且为红  情况2:cur为红,p为红,g为黑,u不存在或者u为黑(p和cur都在其父亲节点同一侧) 情况3:cur为红,p为红,g为黑,u不存在或者u为黑(p和cur在其父

    2024年04月14日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包