MATLAB Fundamentals>>>Smoothing Data with Moving Average

这篇具有很好参考价值的文章主要介绍了MATLAB Fundamentals>>>Smoothing Data with Moving Average。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

MATLAB Fundamentals>Common Data Analysis Techniques>Smoothing Data> (2/5) Smoothing Data with Moving Average


例1:

Smoothing method:Moving mean

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码2:

% Smooth input data
ySm = smoothdata(y,"movmean",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例2:

Smoothing method:Moving mean

Smoothing factor:0.25

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab代码2:

% Smooth input data
ySm = smoothdata(y,"movmean","SmoothingFactor",0.25,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例3:

Smoothing method:Moving median

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码3:

% Smooth input data
ySm = smoothdata(y,"movmedian",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例4:

Smoothing method:Gaussian filter

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码4:

% Smooth input data
ySm = smoothdata(y,"gaussian",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例5:

Smoothing method:Local linear regression(lowess)

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码5:

% Smooth input data
ySm = smoothdata(y,"lowess",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例6:

Smoothing method:Local quadratic regression(loess)

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码6:

% Smooth input data
ySm = smoothdata(y,"loess",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例7:

Smoothing method:Robust Lowess

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码7:

% Smooth input data
ySm = smoothdata(y,"rlowess",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例8:

Smoothing method:Roubst Loess

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码8:

% Smooth input data
ySm = smoothdata(y,"rloess",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

例9:

Smoothing method:Savitzky-Golay polynomial filter

polynomial degree:2

Moving window:Centered 2

MATLAB Fundamentals>>>Smoothing Data with Moving Average,matlab

代码9:文章来源地址https://www.toymoban.com/news/detail-817928.html

% Smooth input data
ySm = smoothdata(y,"sgolay",2,"SamplePoints",x);

% Display results
figure
plot(x,y,"SeriesIndex",6,"DisplayName","Input data")
hold on
plot(x,ySm,"SeriesIndex",1,"LineWidth",1.5, ...
    "DisplayName","Smoothed data")
hold off
legend
xlabel("x")

到了这里,关于MATLAB Fundamentals>>>Smoothing Data with Moving Average的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MATLAB Fundamentals>>>Creating Datetimes

    提示1:If you want to specify the time, use the optional fourth through sixth input arguments in the  datetime  function. They represent the hour, minute, and second in that order. 任务1: Use numeric inputs to create a  datetime  named  d  with a value of “February 29th, 2016 17:00”. 解答: 提示2:To create vectors and matrices of typ

    2024年01月19日
    浏览(34)
  • On Moving Object Segmentation from Monocular Video with Transformers 论文阅读

    标题 :On Moving Object Segmentation from Monocular Video with Transformers 作者 : 来源 :ICCV 时间 :2023 代码地址 :暂无 通过单个移动摄像机进行移动对象检测和分割是一项具有挑战性的任务,需要了解识别、运动和 3D 几何。将识别和重建结合起来可以归结为融合问题,其中需要结合外

    2024年02月08日
    浏览(51)
  • MATLAB Fundamentals>>Representing Discrete Categories

    MATLAB Fundamentals Specialized Data Types Representing Discrete Categories(1/6) Introduction When text labels are intended to represent a finite set of possibilities, a string array may use more memory than a  categorical  array. There are functions designed to work with categories of data, so if your text describes a group or category, this is often the

    2024年01月18日
    浏览(38)
  • MATLAB Fundamentals>>>Fill Missing Values

    MATLAB FundamentalsPreprocessing DataInterpolating Missing Data (1/4) Fill Missing Values This code sets up the activity. 任务1: Create a vector  y  that uses the nearest value to interpolate the  NaN  values of  x . Display the results by making sure  Cleaned data  and  Fill missing entries  are checked. 解答: 任务2: Look at the gene

    2024年01月21日
    浏览(41)
  • 数字逻辑Fundamentals of Digital Logic with Verilog Design | 3rd Edition Solutins Chapter 4(step by step)

    第四章 重要内容:1、多路选择器  2、采用香农展开的多路选择器综合 3、译码器  4、多路分配器  5、优先级编码器  6、代码转换器  7、算数比较电路  8、Verilog语法 纠错:4-11香农展开式最后结果应该是同或门。 Chapter 4 Chapter 4, Problem 1P Chapter 4, Problem 2P Chapter 4, Problem 3P

    2024年02月05日
    浏览(41)
  • MATLAB知识点:mean : 计算平均值(mean/average value)

    ​讲解视频:可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇(数学建模清风主讲,适合零基础同学观看)_哔哩哔哩_bilibili 节选自第3章 3.4.1节 假设向量 ,即向量y有n个元素,那么它的平均值等于. 在MATLAB中,mean函数可以用来计算

    2024年04月09日
    浏览(79)
  • Maintaining Performance with Less Data(待补)

    hh 为了降低神经网络模型的训练成本, 我们提出了一种用于图像分类的神经网络训练的新方法,动态地减少输入数据 。随着深度学习任务变得越来越流行,它们的计算复杂性也在增加,从而导致更复杂的算法和模型,这些算法和模型的运行时间更长,需要更多的输入数据。

    2024年01月24日
    浏览(36)
  • 吴恩达ChatGPT《LangChain Chat with Your Data》笔记

    课程地址:https://learn.deeplearning.ai/langchain-chat-with-your-data/lesson/1/introduction 像ChatGPT这样的LLM可以回答很多类型的问题,但是如果仅仅依靠LLM,它只知道训练过的内容,而不知道其他内容,比如个人数据,互联网实时信息等。如果个人用户可以利用LLM与自己的文档进行对话,并

    2024年02月16日
    浏览(44)
  • 2 Data Streaming Pipelines With Flink and Kafka

    作者:禅与计算机程序设计艺术 数据流是一个连续不断的、产生、存储和处理数据的过程。传统上,数据流编程都是基于特定平台(比如:消息队列,数据仓库,事件溯源)的SDK或者API进行开发,但随着云计算和容器技术的发展,越来越多的企业选择使用开源工具实现自己的

    2024年02月08日
    浏览(55)
  • Streamlining Your Data Pipeline with Databricks and Apache Flink

    大数据技术在过去的几年里发展迅速,成为了企业和组织中不可或缺的一部分。随着数据的规模和复杂性的增加,传统的数据处理技术已经无法满足需求。为了解决这个问题,我们需要一种更高效、可扩展的数据处理框架。 Databricks 和 Apache Flink 是两个非常受欢迎的开源项目

    2024年02月22日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包