Ai 算法之Transformer 模型的实现: 一 、Input Embedding模块和Positional Embedding模块的实现

这篇具有很好参考价值的文章主要介绍了Ai 算法之Transformer 模型的实现: 一 、Input Embedding模块和Positional Embedding模块的实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一 文章生成模型简介

比较常见的文章生成模型有以下几种:

  1. RNN:循环神经网络。可以处理长度变化的序列数据,比如自然语言文本。RNN通过隐藏层中的循环结构来传递时间序列中的信息,从而使当前的计算可以参照之前的信息。但这种模型有梯度爆炸和梯度消失的风险,所以只能做简单的生成任务。
  2. LSTM:长短记忆网络。通过引入门控制机制来控制信息传递。有效避免了梯度消失和梯度保障的问题。LSTM可以做些复杂的生成任务。
  3. Transformer:目前最火的,一种基于自注意力机制(self-attention mechanism)的神经网络模型。Transformer 和 以上所述的几个生成模型主要的区别是,RNN、LSTM的训练迭代是串行的,必须要处理完当前字才可以处理下一个。而 Transformer 所有字符是同时训练的,也就是并行的。因此它效率更高,同样,由于参考了全文位置信息,因此效果更好。

值得一提的是这几个模型的价值并不仅限于在文章生成中。所有需要"经验值"的应用场景应该都适合借鉴。比如19年我曾尝试用LSTM来实现物联网小车自动驾驶。将操作指令转换为文字编码,实现了自动巡航、避障、撞墙倒车等操作。效果还不错。相信更换为注意力机制效果会更好

本文无意重塑轮子,纯是基于兴趣学习,尝试复现模型构造过程,本文所使用环境为python3.9+pytorch,参考论文为Google的Attention Is All You Need 2017。欢迎骚扰探讨

关于RNN和LSTM的实现代码,请查看我博客中的相关文章

1.1 Transformer 结构图

左侧为外国原版,右侧为在下翻译版
如何用transformer开发一个简单的生成式ai,AI 人工智能,# python,人工智能,算法,transformer
Transformer 模型主要分为两大部分,分别是 Encoder 、 Decoder,即组码器和解码器。组码器负责把输入语言序列映射成隐藏层,然后解码器再把隐藏层映射为其他自然语言序列。在原文中解码器和编码器都被设为6层(N = 6)。据说这个6没有特殊的含义。只是根据经验平衡了训练和精度的尝试数字。
在输入语句进入组码器前需要对数据进行预处理。这就是本章的主要内容:Embedding模块的实现

二 Input Embedding 字符编码模块的实现

字符编码本质上就相当于映射,将现实中的物体用数学的方式映射到计算机中。以翻译任务为例,我们需要准备两种不同的语言数据,并使用索引将他们一一对应。比如英文字符[i, eat, shit], 中文[我,吃,屎],这就相当于我们知道了问题和答案,剩下的就是训练隐藏层的参数了。

在npl中,为了使字符可以计算,首先要先将输入的词汇进行数学转化。在比较在其的语言处理中,一般使用one hot(独热)编码。即指定一个表值范围数组,单独改变某个位置上的值来决定其特征。
独热编码示例:
[1,0 ,0 ,0] = 我
[0,1 ,0 ,0] = 吃
[0,0, 1 ,0] = 屎
独热编码简单清晰,但无法对比两个值之间的相似性,无法进行降维操作。所以在tranfomer中 使用多维向量来表示单词的编码信息。一个向量表示一个单词。多个单词在一起就是一个矩阵。相比较以前的独热编码,词向量可以便于计算单词之间的相似性(点积),也可以进行降维操作。
单词向量示例:
[11,23,31,32]
[23,21,31,23]
[13,32,33,93]

单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。以下是使用pythoch获取Embedding向量的代码脚本,复制可用。

import torch
import torch.nn as nn

# padding:当句子长度不一,有空白时用0补缺
embedding = nn.Embedding(单词数量, 向量维度,padding=0)
# 根据索引获取8个单词向量
input = torch.LongTensor([[1, 2, 3, 4], [11, 12, 13, 13]])
print(embedding(input))
print(embedding(input).shape)

三 Positional Embedding 位置编码模块的实现

位置编码模块负责将输入序列中的位置信息写入词向量,输入到transformer中的句子没有顺序信息,因此需要通过计算句子的长度,单词长度以及单词所在的位置通过编码来为输入系列添加位置信息。Tranformer原文作者使用的是正弦余弦编码

位置 Embedding 用 PE表示,PE 的维度与单词 Embedding 是一样的。PE 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:

那么单词向量是怎么得来的呢?
单词向量 = 原始单词编码 + 单词位置编码
举个例子:我吃屎 = i eat shit

如何用transformer开发一个简单的生成式ai,AI 人工智能,# python,人工智能,算法,transformer
位置编码计算公式

偶数索引: P E ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i / d ) 偶数索引:PE(pos,2i)=sin(pos/10000^2i/d) 偶数索引:PE(pos,2i)=sin(pos/100002i/d)
单数索引: P E ( p o s , 2 i ) = c o s ( p o s / 1000 0 2 i / d ) 单数索引:PE(pos,2i)=cos(pos/10000^2i/d) 单数索引:PE(pos,2i)=cos(pos/100002i/d)

import torch
import torch.nn as nn
import ludash as ld
import cv2
import seaborn    
import matplotlib.pyplot as plt

term = (10000**2/i)
pe[:, 0::2] = torch.sin(position * term )
pe[:, 1::2] = torch.cos(position * term )

四 获取预处理数据

获取到字符编码和位置编码后,就可以计算出参考了字符位置的权重矩阵

公式: [ q , k , v ] = ( I n p u t E m b e d d i n g + p o s i t i o n a l E m b e d d i n g ) ∗ [ W q , W k , W v ] 公式: [q, k, v] =(Input Embedding + positional Embedding)* [Wq, Wk, Wv] 公式:[q,k,v]=InputEmbedding+positionalEmbedding[Wq,Wk,Wv]
q = 查询向量, k = 键值向量, v = 值向量 q = 查询向量,k = 键值向量,v = 值向量 q=查询向量,k=键值向量,v=值向量






取得这个值后就可以进行下一步:传入Transfrom的组码器进行组码处理了。文章来源地址https://www.toymoban.com/news/detail-818004.html

到了这里,关于Ai 算法之Transformer 模型的实现: 一 、Input Embedding模块和Positional Embedding模块的实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【AI理论学习】语言模型:从Word Embedding到ELMo

    本文主要介绍一种建立在LSTM基础上的ELMo预训练模型。2013年的Word2Vec及2014年的GloVe的工作中,每个词对应一个vector,对于多义词无能为力。ELMo的工作对于此,提出了一个较好的解决方案。不同于以往的一个词对应一个向量,是固定的。 在ELMo世界里,预训练好的模型不再只是

    2024年02月10日
    浏览(36)
  • 相对位置编码(二) Relative Positional Encodings - Transformer-XL

    在Transformer-XL中,由于设计了segments,如果仍采用transformer模型中的绝对位置编码的话,将不能区分处不同segments内同样相对位置的词的先后顺序。 比如对于segmenti��������的第k个token,和segmentj��������的第k个token的绝对位置编码是完全相同的。 鉴于这样的

    2024年02月12日
    浏览(38)
  • 【合合TextIn】AI构建新质生产力,合合信息Embedding模型助力专业知识应用

    目录 一、合合信息acge模型获MTEB中文榜单第一 二、MTEB与C-MTEB 三、Embedding模型的意义 四、合合信息acge模型 (一)acge模型特点 (二)acge模型功能 (三)acge模型优势 五、公司介绍 一、合合信息acge模型获MTEB中文榜单第一 现阶段,大语言模型的飞速发展吸引着社会各界的目光

    2024年04月09日
    浏览(103)
  • 详解AI大模型行业黑话,迅速搞懂提示工程(prompt)、向量工程(embedding)、微调工程(fine-tune)

    大家都在讨论大模型,似乎什么都可以与大模型结合,可当初学者也想上手时,却面临一堆令人头大的词汇,什么Prompt、、Embedding、Fine-tuning,看到瞬间头都大了。一堆英文就算了,还不容易查到正确解释,怎么办呢?别担心,本文就用一种有趣的方式让大家认识它们。 首先

    2024年02月02日
    浏览(40)
  • Transformer的PE(position embedding),即位置编码理解

    最近要搞理论学习了,先前搞了大半年的工程,又要捡起一些理论原理,现在还是从transformer熟悉理解一下,争取吃透。 关于transformer的经典介绍和资料也一大堆,我就不展开来讲了,碰到了一些一时没太想明白的问题,就记一下,也当是重新理解一遍。 transformer的输入要么

    2024年02月16日
    浏览(66)
  • 【论文阅读】Swin Transformer Embedding UNet用于遥感图像语义分割

    Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation 全局上下文信息是遥感图像语义分割的关键 具有强大全局建模能力的Swin transformer 提出了一种新的RS图像语义分割框架ST-UNet型网络(UNet) 解决方案:将Swin transformer嵌入到经典的基于cnn的UNet中 ST-UNet由Swin变压器和CNN并联

    2024年02月08日
    浏览(61)
  • Stable Diffusion系列课程上:安装、提示词入门、常用模型(checkpoint、embedding、LORA)、放大算法、局部重绘、常用插件

    AUTOMATIC1111/stable-diffusion-webui 参考B站Nenly视频《零基础学会Stable Diffusion》、视频课件 推荐网站:stable-diffusion-art、Civitai(魔法) 、libilibi、AI艺术天堂 推荐Stable Diffusion整合资料: NovelAI资源整合、《AI绘图指南wiki》、AiDraw绘画手册 重 绘学派法术绪论1.2、 Stable Diffusion 潜工具

    2024年02月15日
    浏览(58)
  • Meta发布Megabyte AI模型抗衡Transformer

    ChatGPT学习笔记 文章包括如下的内容: ChatGPT 介绍 科普 背景知识 ChatGPT 功能 ChatGPT 原理 等等,文章的地址在这里。 🚀 Meta发布Megabyte AI模型抗衡Transformer:解决后者已知问题、速度提升4成 摘要:Meta团队开发的Megabyte AI模型可以抗衡当前在自然语言处理领域非常流行的Transf

    2024年02月07日
    浏览(36)
  • 论文阅读笔记AI篇 —— Transformer模型理论+实战 (二)

    资源地址 Attention is all you need.pdf(0积分) - CSDN 图1——Transformer结构图 图2——Attention结构图 Background 中说,ByteNet和ConvS2S都使用了CNN结构作为基础模块去计算input和output之间的潜在联系,其中,关联来自两个任意输入或输出位置的信号所需的计算量,伴随着distance的增长而增长,

    2024年01月16日
    浏览(45)
  • 论文阅读笔记AI篇 —— Transformer模型理论+实战 (三)

    精读的过程要把每个细节都钻研透,不留有死角。各种维度参数已经在“理论+实战(二)”中说清楚了,若之后还有疑问我再补上。 三、参考文章或视频链接 [1] 【超强动画,一步一步深入浅出解释Transformer原理!】 3.1 参考文章或视频链接 [1] What’s the difference between Attent

    2024年01月23日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包