【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction

这篇具有很好参考价值的文章主要介绍了【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接:https://openaccess.thecvf.com/content/CVPR2023/papers/Huang_Tri-Perspective_View_for_Vision-Based_3D_Semantic_Occupancy_Prediction_CVPR_2023_paper.pdf

1. 引言

体素表达需要较大的计算量和特别的技巧(如稀疏卷积),BEV表达难以使用平面特征编码所有3D结构。

本文提出三视图(TPV)表达3D场景。为得到空间中一个点的特征,首先将其投影到三视图平面上,使用双线性插值获取各投影点的特征。然后对3个投影点特征进行求和,得到3D点的综合特征。这样,可以以任意分辨率描述3D场景,并对不同的3D点产生不同的特征。此外,本文还提出基于Transformer的编码器(TPVFormer),以从2D图像获取TPV特征。首先,在TPV网格查询与2D图像特征之间使用图像交叉注意力,将2D信息提升到3D。然后,在TPV特征之间使用跨视图混合注意力进行TPV跨平面交互。

【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction,自动驾驶中的3D占用预测,论文阅读,深度学习,计算机视觉,自动驾驶

本文进行的任务为3D语义占用估计,其中训练时只有稀疏激光雷达语义标签,但测试时需要所有体素的语义预测,如上图所示。但由于没有基准,只能进行定性分析,或在两个代理任务上进行定量分析:激光雷达分割(稀疏训练、稀疏测试)和3D语义场景补全(密集训练、密集测试)。两任务均仅使用图像数据;对激光雷达分割任务,仅使用激光雷达点云进行点查询以计算评估指标。

3. 提出的方法

3.1 将BEV推广到TPV

【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction,自动驾驶中的3D占用预测,论文阅读,深度学习,计算机视觉,自动驾驶
本文提出三视图(TPV)表达,不需像BEV表达一样压缩某轴,且可以避免体素表达的立方复杂度,如上图所示。具体来说,学习3个轴对齐的正交平面:
T = [ T H W , T D H , T W D ] , T H W ∈ R H × W × C , T D H ∈ R D × H × C , T W D ∈ R W × D × C T=[T^{HW},T^{DH},T^{WD}],T^{HW}\in\mathbb{R}^{H\times W\times C},T^{DH}\in\mathbb{R}^{D\times H\times C},T^{WD}\in\mathbb{R}^{W\times D\times C} T=[THW,TDH,TWD],THWRH×W×C,TDHRD×H×C,TWDRW×D×C

分别表达俯视图、侧视图和前视图。

点查询的形式:给定世界坐标系下的查询点 ( x , y , z ) (x,y,z) (x,y,z),TPV表达首先聚合其在三视图平面上的投影,以得到点的综合描述。设投影到TPV平面的坐标为 [ ( h , w ) , ( d , h ) , ( w , d ) ] [(h,w),(d,h),(w,d)] [(h,w),(d,h),(w,d)],采样的特征为 [ t h w , t d h , t w d ] [t_{hw},t_{dh},t_{wd}] [thw,tdh,twd],则聚合特征为:
t i j = S ( T , ( i , j ) ) = S ( T , P I J ( x , y , z ) ) , ( i , j ) ∈ { ( h , w ) , ( d , h ) , ( w , d ) } f x y z = A ( t h w , t d h , t w d ) t_{ij}=\mathcal{S}(T,(i,j))=\mathcal{S}(T,\mathcal{P}_{IJ}(x,y,z)),(i,j)\in\{(h,w),(d,h),(w,d)\}\\ f_{xyz}=\mathcal{A}(t_{hw},t_{dh},t_{wd}) tij=S(T,(i,j))=S(T,PIJ(x,y,z)),(i,j){(h,w),(d,h),(w,d)}fxyz=A(thw,tdh,twd)

其中 S \mathcal{S} S为采样函数, A \mathcal{A} A为聚合函数, P \mathcal{P} P为投影函数(由于TPV平面与世界坐标系对齐,实际仅进行缩放)。

体素特征的形式:TPV平面会沿其正交方向复制自身并与来自其余视图的特征求和,得到3D特征空间。其存储与计算复杂度为 O ( H W + D H + W D ) O(HW+DH+WD) O(HW+DH+WD)

总的来说,TPV可以通过多视图的相互补充提供更细粒度的3D场景理解,同时保持高效性。

3.2 TPVFormer

本文使用TPV编码器(TPVFormer),通过注意力机制将图像特征提升到TPV平面。

总体结构:本文引入TPV查询、图像交叉注意力(ICA)与跨视图混合注意力(CVHA)以保证有效生成TPV平面,如下图所示。TPV查询就是TPV平面上的网格特征, t ∈ T t\in T tT,用于编码视图特定的信息。跨视图混合注意力在同一平面或不同平面上各TPV查询之间交互,以获取上下文信息。图像交叉注意力则使用可变形注意力聚合图像特征。
【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction,自动驾驶中的3D占用预测,论文阅读,深度学习,计算机视觉,自动驾驶
本文还进一步建立了两种Transformer块:混合-交叉注意力块(HCAB,由CVHA与ICA组成,位于TPVFormer的前半部分,查询图像特征中的视觉信息)与混合注意力块(HAB,仅含CVHA,位于HCAB之后,专门进行上下文信息编码)。

TPV查询:每个TPV查询对应相应视图中 s × s   m 2 s\times s \ \text{m}^2 s×s m2的2D单元格区域或沿正交方向延伸的3D柱状区域。TPV查询首先会使用原始视觉信息增强(HCAB),再通过来自其余查询的上下文信息细化(HAB)。TPV查询被初始化为可学习参数。

图像交叉注意力:使用可变形注意力以节省计算。对于 ( h , w ) (h,w) (h,w)处的查询 t h w t_{hw} thw,首先通过逆投影函数 P H W − 1 \mathcal{P}^{-1}_{HW} PHW1计算其世界坐标系下的坐标 ( x , y ) (x,y) (x,y),然后沿平面的正交方向均匀采样 N H W r e f N_{HW}^{ref} NHWref个参考点:
( x , y ) = P H W − 1 ( h , w ) = ( ( h − H 2 ) × s , ( w − W 2 ) × s ) Ref h w w = { ( x , y , z i ) } i = 1 N H W r e f (x,y)=\mathcal{P}^{-1}_{HW}(h,w)=((h-\frac H 2)\times s,(w-\frac W 2)\times s)\\ \text{Ref}_{hw}^w=\{(x,y,z_i)\}^{N_{HW}^{ref}}_{i=1} (x,y)=PHW1(h,w)=((h2H)×s,(w2W)×s)Refhww={(x,y,zi)}i=1NHWref

其中 Ref h w w \text{Ref}_{hw}^w Refhww表示查询 t h w t_{hw} thw在世界坐标系下的参考点集。其余平面的查询类似,需要注意不同平面的 N r e f N^{ref} Nref不同,因为不同轴的范围不同。然后,将参考点投影到像素坐标系,以采样图像特征:
Ref h w p = P p i x ( Ref h w w ) \text{Ref}_{hw}^p=\mathcal{P}_{pix}(\text{Ref}_{hw}^w) Refhwp=Ppix(Refhww)

其中 Ref h w p \text{Ref}_{hw}^p Refhwp为查询 t h w t_{hw} thw在像素坐标系下的参考点集, P p i x \mathcal{P}_{pix} Ppix为由相机内外参确定的透视投影函数。若存在 N c N_c Nc个相机,则生成的参考点集为 { Ref h w p , j } j = 1 N c \{\text{Ref}_{hw}^{p,j}\}_{j=1}^{N_c} {Refhwp,j}j=1Nc。此外,可以剔除为落在图像范围外的参考点以节省计算。最后,将 t h w t_{hw} thw通过两个线性层生成偏移量与注意力权重,并通过加权求和采样图像特征产生更新的TPV查询:
ICA ( t h w , I ) = 1 ∣ N h w v a l ∣ ∑ j ∈ N h w v a l DA ( t h w , Ref h w p . j , I j ) \text{ICA}(t_{hw},I)=\frac 1{|N_{hw}^{val}|}\sum_{j\in N_{hw}^{val}}\text{DA}(t_{hw},\text{Ref}_{hw}^{p.j},I_j) ICA(thw,I)=Nhwval1jNhwvalDA(thw,Refhwp.j,Ij)

其中 N h w v a l N_{hw}^{val} Nhwval为有效视图的集合, I j I_j Ij为视图 j j j的图像特征, DA \text{DA} DA为可变形注意力函数。

跨视图混合注意力:该步骤使不同视图能交换信息,以提取上下文。同样使用可变形注意力,其中TPV平面作为键与值。首先将参考点分为3个不相交的子集,分属俯视图、侧视图和前视图:
R h w = R h w t o p ∪ R h w s i d e ∪ R h w f r o n t R_{hw}=R^{top}_{hw}\cup R_{hw}^{side}\cup R_{hw}^{front} Rhw=RhwtopRhwsideRhwfront

为收集俯视图平面的参考点,进行查询 t h w t_{hw} thw所在邻域内的随机采样。对侧视图与前视图,沿正交方向均匀采样并投影到侧视平面与前视平面:
R h w s i d e = { ( d i , h ) } i , R h w f r o n t = { ( w , d i ) } i R_{hw}^{side}=\{(d_i,h)\}_i,R_{hw}^{front}=\{(w,d_i)\}_i Rhwside={(di,h)}i,Rhwfront={(w,di)}i

然后进行可变形注意力:
C V H A ( t h w ) = DA ( t h w , R h w , T ) CVHA(t_{hw})=\text{DA}(t_{hw},R_{hw},T) CVHA(thw)=DA(thw,Rhw,T)

3.3 TPV的应用

需要将TPV平面 T T T转化为点或体素特征以输入任务头。

点特征:给定世界坐标系下的点坐标,与点查询相同,将点投影到TPV平面上检索特征并求和。

体素特征:将TPV平面沿正交方向广播得到3个大小相同的特征张量,并求和。

为进行分割任务,本文在点或体素特征上添加2层MLP以预测语义标签。

4. 实验

4.1 任务描述

3D语义占用预测:使用稀疏语义标签(激光雷达点)训练,但测试时需要生成所有体素的语义占用。

激光雷达分割:对应点查询形式,预测给定点的语义标签。注意仍使用RGB图像输入。

语义场景补全(SSC):使用体素标签监督训练。该任务对应体素查询形式。评估时,场景补全使用IoU(忽略类别),SSC使用mIoU。

4.2 实施细节

3D语义占用预测和激光雷达分割:训练时使用交叉熵损失和lovasz-softmax损失。其中3D语义占用预测会从稀疏点云生成逐体素的伪标签(不含点的体素标记为空),损失函数均使用体素预测;激光雷达分割任务使用点预测计算lovasz-softmax损失,体素预测计算交叉熵损失以提高点分类精度并避免语义模糊。

语义场景补全:使用MonoScene的损失。

4.3 3D语义占用预测结果

主要结果:可视化表明,预测结果比激光雷达更加密集,表明了TPV表达对建模3D场景和语义占用预测的有效性。

测试时的任意分辨率:可以在测试时随意调整TPV平面的分辨率,而无需重新训练网络。

4.4 激光雷达分割结果

作为第一个基于视觉的激光雷达分割任务,本文与其余基于激光雷达的任务比较。实验表明,本文方法能达到相当的性能水平。

4.5 语义场景补全结果

实验表明,本文的方法在性能和速度上均能超过MonoScene,且参数量更低。

4.6 分析

激光雷达分割中的损失函数:当损失函数的两项分别使用点预测和体素预测时,体素预测和点预测的mIoU均很高且相近。当仅使用点预测(体素预测)时,体素预测(点预测)的性能会比点预测(体素预测)明显更低。这表明连续与离散的监督对学习鲁棒表达的重要性。

TPV分辨率和特征维度:提高分辨率带来的性能提升更为显著,因为能增强细粒度结构的建模。

BEV、体素与TPV的比较:各表达使用相似的方法将图像特征提升到3D。结果表明,在相近的模型大小下,TPV的性能与速度均更高。

HCAB与HAB块的数量:当HCAB的数量增加时,IoU增大,这说明直接视觉线索对几何理解的重要性。但上下文信息也很重要,因为最高的mIoU是在适当数量的HCAB与HAB下得到的。

局限性:基于图像的方法的优势是做出3D空间密集预测的能力;但在激光雷达分割任务上,仍不如激光雷达方法。文章来源地址https://www.toymoban.com/news/detail-818085.html

到了这里,关于【原文链接】Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 微信小程序web-view使用说明,及链接打不开问题

             开发微信小程序时,有时会需要在小程序内打开网页链接,这时就需要用到 web-view 标签。web-view 是小程序上用来承载网页的容器,且每个页面只能有一个 web-view,它会自动铺满整个页面,并覆盖其他组件。目前个人类型的小程序上不支持使用。         在小程

    2024年02月09日
    浏览(79)
  • 论文阅读:Rethinking Range View Representation for LiDAR Segmentation

    来源ICCV2023 LiDAR分割对于自动驾驶感知至关重要。最近的趋势有利于基于点或体素的方法,因为它们通常产生比传统的距离视图表示更好的性能。在这项工作中,我们揭示了建立强大的距离视图模型的几个关键因素。我们观察到, “多对一”的映射 , 语义不连贯性 , 形状变

    2024年02月02日
    浏览(40)
  • 漏刻有时地理信息系统LOCKGIS小程序配置说明(web-view组件、服务器域名配置、复制链接和转发功能)

    漏刻有时地理信息系统说明文档(LOCKGIS、php后台管理、三端一体PC-H5-微信小程序、百度地图jsAPI二次开发、标注弹窗导航) 漏刻有时地理信息系统LOCKGIS小程序配置说明(web-view组件、服务器域名配置、复制链接和转发功能) 漏刻有时地理信息系统LOCKGIS主程序配置说明(地图调起弹

    2024年02月07日
    浏览(46)
  • PETR: Position Embedding Transformation for Multi-View 3D Object Detection

    PETR: Position Embedding Transformation for Multi-View 3D Object Detection 旷视 DETR3D 中 2D-3D过程 存在的问题: 预测的参考点坐标可能不准确,在采样图片特征时可能拿不到对应的特征。 只有参考点 投影位置的图像特征被使用,无法学到全局的特征。 采样图像特征的过程过于复杂,难于应用

    2024年02月16日
    浏览(43)
  • No view found for id 0x7f0901c3 for fragment解决以及线上bug排查技巧

    开发这么久,不知道你们是否也经历过这样的情况,测试或者用户,反馈app闪退,结果你自己打开开发工具,去调试,一切正常,然后闪退还是存在,只是在开发环境中不能重现。这种情况一般是在特定的情况下才触发的bug。比如app退出后台,再打开的时候,重启了,这样你

    2024年02月12日
    浏览(38)
  • BMR论文阅读笔记(Bootstrapping Multi-view Representations for Fake News Detection)

    论文标题:Bootstrapping Multi-view Representations for Fake News Detection 论文作者:Qichao Ying, Xiaoxiao Hu, Yangming Zhou, Zhenxing Qian, Dan Zeng, Shiming Ge 论文来源:AAAI 2023,Paper 代码来源:Code 基于深度学习的多模态 虚假新闻检测 (Fake News Detection, FND)一直饱受关注,本文发现以往关于多模态FND的研

    2024年02月05日
    浏览(45)
  • 【论文笔记】SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection

    原文链接:https://arxiv.org/abs/2307.02270   目前的从单目相机生成伪传感器表达的方法依赖预训练的深度估计网络。这些方法需要深度标签来训练深度估计网络,且伪立体方法通过图像正向变形合成立体图像,会导致遮挡区域的像素伪影、扭曲、孔洞。此外,特征级别的伪立体

    2024年02月08日
    浏览(40)
  • 论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

    论文:https://arxiv.org/pdf/2103.10039.pdf 代码:https://github.com/tusen-ai/RangeDet 提出了一个名为RangeDet的新型3D物体检测技术,利用激光雷达数据。 RangeDet的核心在于使用了一种紧凑的表示方法,称为范围视图,与其他常用方法相比,它避免了计算误差。 根据论文中的讨论,使用范围视

    2024年04月13日
    浏览(41)
  • IAR Embedded Workbench for Arm, v. 9.40下载链接

    IAR—Registration Complete https://register.iar.com/confirm?lang=enkey=ab3bb175-d90b-452a-be84-0296348e00c7

    2024年01月19日
    浏览(38)
  • 用于多视图 3D 对象检测的位置嵌入变换(PETR: Position Embedding Transformation for Multi-View 3D Object Detection)

    本文PETR (PETR: Position Embedding Transformation for Multi-View 3D Object Detection)是对DETR3D (3D Object Detection from Multi-view Images via 3D-to-2D Queries)的改进,将2D转换至3D,还存在三个问题: (1) 空间与多视图之间的信息交互依赖于3D参考点估计的准确性,使得采样的特征超出了对象区域,无法投影

    2024年02月07日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包