SpringBoot整合Flink(施耐德PLC物联网信息采集)

这篇具有很好参考价值的文章主要介绍了SpringBoot整合Flink(施耐德PLC物联网信息采集)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

SpringBoot整合Flink(施耐德PLC物联网信息采集)

Linux环境安装kafka

前情:

施耐德PLC设备(TM200C16R)设置好信息采集程序,连接局域网,SpringBoot订阅MQTT主题,消息转至kafka,由flink接收并持久化到mysql数据库;

springboot flink,大数据,物联网,flink,大数据,物联网,mr.chenyb,Powered by 金山文档

Wireshark抓包如下:

springboot flink,大数据,物联网,flink,大数据,物联网,mr.chenyb,Powered by 金山文档

MQTTBox测试订阅如下:

springboot flink,大数据,物联网,flink,大数据,物联网,mr.chenyb,Powered by 金山文档

已知参数:

服务器IP:139.220.193.14

端口号:1883

应用端账号:admin@tenlink

应用端密码:Tenlink@123

物联网账号:202303171001

物联网账号密码:03171001

订阅话题(topic):

202303171001/p(发布话题,由设备发送,应用端接收)

202303171001/s(订阅话题,由应用端发送,设备接收)

订阅mqtt (前提是kafka是已经就绪状态且plc_thoroughfare主题是存在的)

  • maven pom

        <dependency>
            <groupId>org.eclipse.paho</groupId>
            <artifactId>org.eclipse.paho.client.mqttv3</artifactId>
            <version>1.2.5</version>
        </dependency>
  • yaml配置

spring:
  kafka:
    bootstrap-servers: ip:9092
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

## 自定义
kafka:
  topics:
    # kafka 主题
    plc1: plc_thoroughfare

plc:
  broker: tcp://139.220.193.14:1883
  subscribe-topic:  202303171001/p
  username: admin@tenlink
  password: Tenlink@123
  client-id: subscribe_client
  • 订阅mqtt并将报文发送到kafka主题

import org.eclipse.paho.client.mqttv3.*;
import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;

/**
 * PLC 订阅消息
 */
@Component
public class SubscribeSample {

    private static final Logger log = LoggerFactory.getLogger(SubscribeSample.class);

    @Autowired
    private KafkaTemplate<String,Object> kafkaTemplate;

    @Value("${kafka.topics.plc1}")
    private String plc1;
    @Value("${plc.broker}")
    private String broker;
    @Value("${plc.subscribe-topic}")
    private String subscribeTopic;
    @Value("${plc.username}")
    private String username;
    @Value("${plc.password}")
    private String password;
    @Value("${plc.client-id}")
    private String clientId;

    @PostConstruct
    public void plcGather() {
        int qos = 0;

        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                MqttClient client = null;
                try {
                    client = new MqttClient(broker, clientId, new MemoryPersistence());
                    // 连接参数
                    MqttConnectOptions options = new MqttConnectOptions();
                    options.setUserName(username);
                    options.setPassword(password.toCharArray());
                    options.setConnectionTimeout(60);
                    options.setKeepAliveInterval(60);
                    // 设置回调
                    client.setCallback(new MqttCallback() {

                        public void connectionLost(Throwable cause) {
                            System.out.println("connectionLost: " + cause.getMessage());
                        }

                        public void messageArrived(String topic, MqttMessage message) {

                            String data = new String(message.getPayload());

                            kafkaTemplate.send(plc1,data).addCallback(success ->{
                                // 消息发送到的topic
                                String kafkaTopic = success.getRecordMetadata().topic();
                                // 消息发送到的分区
//                                int partition = success.getRecordMetadata().partition();
                                // 消息在分区内的offset
//                                long offset = success.getRecordMetadata().offset();
                                log.info("mqtt成功将消息:{},转入到kafka主题->{}", data,kafkaTopic);
                            },failure ->{
                                throw new RuntimeException("发送消息失败:" + failure.getMessage());
                            });
                        }

                        public void deliveryComplete(IMqttDeliveryToken token) {
                            log.info("deliveryComplete---------{}", token.isComplete());
                        }

                    });
                    client.connect(options);
                    client.subscribe(subscribeTopic, qos);
                } catch (MqttException e) {
                    e.printStackTrace();
                }
            }
        });

        thread.start();
    }
}
  • 采集报文测试(如下图表示成功,并且已经发送到了kafka主题上)

springboot flink,大数据,物联网,flink,大数据,物联网,mr.chenyb,Powered by 金山文档

Flink接收kafka数据

  • maven pom

<!--工具类 开始-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.83</version>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-collections4</artifactId>
            <version>4.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.26</version>
        </dependency>
        <!--工具类 结束-->

        <!-- flink依赖引入 开始-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.13.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.13.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>1.13.1</version>
        </dependency>
        <!-- flink连接kafka -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.13.1</version>
        </dependency>
        <!-- flink连接es-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>1.13.1</version>
        </dependency>
        <!-- flink连接mysql-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-jdbc_2.11</artifactId>
            <version>1.10.0</version>
        </dependency>
        <!-- flink依赖引入 结束-->

        <!--spring data jpa-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>
  • yaml配置

# 服务接口
server:
  port: 8222

spring:
  kafka:
    bootstrap-servers: ip:9092
    consumer:
      group-id: kafka
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer

  datasource:
    url:  jdbc:mysql://127.0.0.01:3306/ceshi?characterEncoding=UTF-8&useUnicode=true&useSSL=false&tinyInt1isBit=false&allowPublicKeyRetrieval=true&serverTimezone=Asia/Shanghai
    driver-class-name:  com.mysql.cj.jdbc.Driver
    username: root
    password: root
    druid:
      initial-size: 5 #初始化时建立物理连接的个数
      min-idle: 5 #最小连接池数量
      maxActive: 20 #最大连接池数量
      maxWait: 60000 #获取连接时最大等待时间,单位毫秒
      timeBetweenEvictionRunsMillis: 60000 #配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
      minEvictableIdleTimeMillis: 300000 #配置一个连接在池中最小生存的时间,单位是毫秒
      validationQuery: SELECT 1 #用来检测连接是否有效的sql
      testWhileIdle: true #申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效
      testOnBorrow: false #申请连接时执行validationQuery检测连接是否有效,如果为true会降低性能
      testOnReturn: false #归还连接时执行validationQuery检测连接是否有效,如果为true会降低性能
      poolPreparedStatements: true # 打开PSCache,并且指定每个连接上PSCache的大小
      maxPoolPreparedStatementPerConnectionSize: 20 #要启用PSCache,必须配置大于0,当大于0时,poolPreparedStatements自动触发修改为true。在Druid中,不会存在Oracle下PSCache占用内存过多的问题,可以把这个数值配置大一些,比如说100
      filters: stat,wall,slf4j #配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
      #通过connectProperties属性来打开mergeSql功能;慢SQL记录
      connectionProperties: druid.stat.mergeSql\=true;druid.stat.slowSqlMillis\=5000

  jpa:
    hibernate:
      ddl-auto: none
    show-sql: true
    repositories:
      packages: com.hzh.demo.domain.*

#自定义配置
customer:
  #flink相关配置
  flink:
    # 功能开关
    plc-status: true
    plc-topic: plc_thoroughfare

# 定时任务定时清理失效数据
task:
  plc-time: 0 0/1 * * * ?
  • 表结构

-- plc_test definition
CREATE TABLE `plc_test` (
                            `pkid` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '主键id',
                            `json_str` text CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT 'json格式数据',
                            `create_time` bigint NOT NULL COMMENT '创建时间',
                            PRIMARY KEY (`pkid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='plc存储数据测试表';
  • 启动类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.domain.EntityScan;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.scheduling.annotation.EnableScheduling;

@SpringBootApplication
@EnableJpaRepositories(basePackages = "repository basePackages")
@EntityScan("entity basePackages")
@EnableScheduling
public class PLCStorageApplication {

    public static void main(String[] args) {
        SpringApplication.run(PLCStorageApplication.class, args);
    }
}
  • 实体类

import lombok.Builder;
import lombok.Data;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import java.io.Serializable;

/**
 * PLC接收实体
 */
@Table(name = "plc_test")
@Data
@Builder
@Entity
public class PLCDomain implements Serializable {

    private static final long serialVersionUID = 4122384962907036649L;

    @Id
    @Column(name = "pkid")
    public String id;
    @Column(name = "json_str")
    public String jsonStr;
    @Column(name = "create_time")
    private Long createTime;

    public PLCDomain(String id, String jsonStr,Long createTime) {
        this.id = id;
        this.jsonStr = jsonStr;
        this.createTime = createTime;
    }

    public PLCDomain() {

    }
}
  • jpa 接口

import com.hzh.demo.domain.PLCDomain;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface PLCRepository extends JpaRepository<PLCDomain,String> {

}
  • 封装获取上下文工具类(ApplicationContextAware)由于加载先后顺序,flink无法使用spring bean注入的方式,特此封装工具类

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.i18n.LocaleContextHolder;
import org.springframework.stereotype.Component;


@Component
public class ApplicationContextProvider
        implements ApplicationContextAware {
    /**
     * 上下文对象实例
     */
    private static ApplicationContext applicationContext;

    /**
     * 获取applicationContext
     *
     * @return
     */
    public static ApplicationContext getApplicationContext() {
        return applicationContext;
    }

    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        ApplicationContextProvider.applicationContext = applicationContext;
    }

    /**
     * 通过name获取 Bean.
     *
     * @param name
     * @return
     */
    public static Object getBean(String name) {
        return getApplicationContext().getBean(name);
    }

    /**
     * 通过class获取Bean.
     *
     * @param clazz
     * @param <T>
     * @return
     */
    public static <T> T getBean(Class<T> clazz) {
        return getApplicationContext().getBean(clazz);
    }

    /**
     * 通过name,以及Clazz返回指定的Bean
     *
     * @param name
     * @param clazz
     * @param <T>
     * @return
     */
    public static <T> T getBean(String name, Class<T> clazz) {
        return getApplicationContext().getBean(name, clazz);
    }


    /**
     * 描述 : <获得多语言的资源内容>. <br>
     * <p>
     * <使用方法说明>
     * </p>
     *
     * @param code
     * @param args
     * @return
     */
    public static String getMessage(String code, Object[] args) {
        return getApplicationContext().getMessage(code, args, LocaleContextHolder.getLocale());
    }

    /**
     * 描述 : <获得多语言的资源内容>. <br>
     * <p>
     * <使用方法说明>
     * </p>
     *
     * @param code
     * @param args
     * @param defaultMessage
     * @return
     */
    public static String getMessage(String code, Object[] args,
                                    String defaultMessage) {
        return getApplicationContext().getMessage(code, args, defaultMessage,
                LocaleContextHolder.getLocale());
    }
}
  • FIink 第三方输出(mysql写入)

import com.hzh.demo.config.ApplicationContextProvider;
import com.hzh.demo.domain.PLCDomain;
import com.hzh.demo.repository.PLCRepository;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.stereotype.Component;

import java.util.UUID;


/**
 * 向mysql写入数据
 */
@Component
@ConditionalOnProperty(name = "customer.flink.plc-status")
public class MysqlSink implements SinkFunction<String> {

    private static final Logger log = LoggerFactory.getLogger(MysqlSink.class);

    @Override
    public void invoke(String value, Context context) throws Exception {
        long currentTime = context.currentProcessingTime();
        PLCDomain build = PLCDomain.builder()
                .id(UUID.randomUUID().toString().replaceAll("-", ""))
                .jsonStr(value)
                .createTime(currentTime)
                .build();

        PLCRepository repository = ApplicationContextProvider.getBean(PLCRepository.class);
        repository.save(build);
        log.info("持久化写入:{}",build);
        SinkFunction.super.invoke(value, context);
    }
}
  • Flink订阅kafka topic读取持续数据

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import java.util.Properties;

/**
 * 接收 kafka topic 读取数据
 */
@Component
@ConditionalOnProperty(name = "customer.flink.plc-status")
public class FlinkReceivingPLC {
    private static final Logger log = LoggerFactory.getLogger(MyKeyedProcessFunction.class);
    @Value("${spring.kafka.bootstrap-servers:localhost:9092}")
    private String kafkaServer;
    @Value("${customer.flink.plc-topic}")
    private String topic;
    @Value("${spring.kafka.consumer.group-id:kafka}")
    private String groupId;
    @Value("${spring.kafka.consumer.key-deserializer:org.apache.kafka.common.serialization.StringDeserializer}")
    private String keyDeserializer;
    @Value("${spring.kafka.consumer.value-deserializer:org.apache.kafka.common.serialization.StringDeserializer}")
    private String valueDeserializer;

    /**
     * 执行方法
     *
     * @throws Exception 异常
     */
    @PostConstruct
    public void execute(){
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(5000);
        //设定全局并发度
        env.setParallelism(1);
        Properties properties = new Properties();
        //kafka的节点的IP或者hostName,多个使用逗号分隔
        properties.setProperty("bootstrap.servers", kafkaServer);
        //kafka的消费者的group.id
        properties.setProperty("group.id", groupId);
        properties.setProperty("key-deserializer",keyDeserializer);
        properties.setProperty("value-deserializer",valueDeserializer);

        FlinkKafkaConsumer<String> myConsumer = new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties);

        DataStream<String> stream = env.addSource(myConsumer);
        stream.print().setParallelism(1);

        stream
                //分组
                .keyBy(new KeySelector<String, String>() {
                    @Override
                    public String getKey(String value) throws Exception {
                        return value;
                    }
                })
                //指定处理类
//                .process(new MyKeyedProcessFunction())
                //数据第三方输出,mysql持久化
                .addSink(new MysqlSink());

        //启动任务
        new Thread(() -> {
            try {
                env.execute("PLCPersistenceJob");
            } catch (Exception e) {
                log.error(e.toString(), e);
            }
        }).start();
    }
}
  • 失效数据清理机制(为了方便测试,所以清理机制执行频率高且数据失效低)

import com.hzh.demo.repository.PLCRepository;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;

import java.util.Optional;

/**
 * 定时任务配置
 */
@Component
@Configuration
public class QutrzConfig {

    private static final Logger log = LoggerFactory.getLogger(QutrzConfig.class);

    @Autowired
    private PLCRepository plcRepository;

    /**
     * 数据清理机制
     */
    @Scheduled(cron = "${task.plc-time}")
    private void PLCCleaningMechanism (){

        log.info("执行数据清理机制:{}","PLCCleaningMechanism");

        long currentTimeMillis = System.currentTimeMillis();
        Optional.of(this.plcRepository.findAll()).ifPresent(list ->{
            list.forEach(plc ->{
                Long createTime = plc.getCreateTime();

                //大于1分钟为失效数据
                if ((currentTimeMillis - createTime) > (1000 * 60 * 1) ){
                    this.plcRepository.delete(plc);
                    log.info("过期数据已经被清理:{}",plc);
                }
            });
        });
    }
}
  • 测试结果

springboot flink,大数据,物联网,flink,大数据,物联网,mr.chenyb,Powered by 金山文档
  • mysql入库数据文章来源地址https://www.toymoban.com/news/detail-818131.html

springboot flink,大数据,物联网,flink,大数据,物联网,mr.chenyb,Powered by 金山文档

到了这里,关于SpringBoot整合Flink(施耐德PLC物联网信息采集)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SpringBoot整合Spring Data Elasticsearch,写给互联网大厂员工的真心话

    @RunWith(SpringRunner.class) @SpringBootTest(classes = ItcastElasticsearchApplication.class) public class IndexTest { @Autowired private ElasticsearchTemplate elasticsearchTemplate; //注入ElasticsearchTemplate类 @Test public void testCreate(){ // 创建索引,会根据Item类的@Document注解信息来创建 elasticsearchTemplate.createIndex(Item.class)

    2024年04月14日
    浏览(71)
  • 互联网大厂技术-HTTP请求-Springboot整合Feign更优雅地实现Http服务调用

    目录 一、SpringBoot快速整合Feign 1.添加Pom依赖 2.启动类添加注解 3.引用Feign服务 二、为请求添加Header的3种方式 1.添加固定header 2.通过接口签名添加header 3.动态添加header 三、为请求添加超时配置 1.默认超时时间 3.超时异常 4.全局超时配置 5.为单个服务设置超时配置 四、为请求配

    2024年02月04日
    浏览(61)
  • 【Java】SpringBoot快速整合WebSocket实现客户端服务端相互推送信息

    目录 什么是webSocket? webSocket可以用来做什么? WebSocket操作类 一:测试客户端向服务端推送消息 1.启动SpringBoot项目 2.打开网站 3.进行测试消息推送 4.后端进行查看测试结果 二:测试服务端向客户端推送消息 1.接口代码 2.使用postman进行调用 3.查看测试结果         WebSocke

    2024年01月20日
    浏览(62)
  • 物联网网关与plc怎么连接?

    物联网网关与plc怎么连接 ? 物联网是当今社会中最热门的技术之一,而物联网网关则是连接物联网设备与云平台的核心设备之一。物联网网关在连接各种传感器和设备时起着至关重要的作用。而另一种广泛应用于工业控制和自动化领域的设备是可编程逻辑控制器(Programmab

    2024年01月22日
    浏览(52)
  • 互联网大厂技术-HTTP请求-Springboot整合Feign更优雅地实现Http服务调用 no suitable HttpMessageConverter found for response type

    目录 一、SpringBoot快速整合Feign 1.添加Pom依赖 2.启动类添加注解 3.引用Feign服务 二、为请求添加Header的3种方式 1.添加固定header 2.通过接口签名添加header 3.动态添加header 三、为请求添加超时配置 1.默认超时时间 3.超时异常 4.全局超时配置 5.为单个服务设置超时配置 四、为请求配

    2024年02月11日
    浏览(55)
  • 工业网关、物联网网关与PLC网关是什么?

    网关是一种用于连接不同网络的网络设备,其作用是实现网络之间的通信和数据交换。它负责将一个网络的数据转发到另一个网络,并且可以进行路由、转换和过滤等处理。通常用于连接局域网和广域网之间,可以是硬件设备或者软件程序。通过网关,用户可以访问外部网络

    2024年03月11日
    浏览(44)
  • C#、JAVA读写PLC物联网Modbus

    Modbus协议是一种常用于工业自动化领域的通信协议,它使用简单、易实现、可靠的特点得到了广泛应用。物联网中的设备也需要使用Modbus协议进行通信。本文将介绍物联网Modbus通信的相关内容。 一、Modbus协议简介 Modbus协议是一种串行通信协议,它最初由Modicon公司在1979年发布

    2024年02月10日
    浏览(41)
  • MQTT网关 5G物联网网关 PLC控制工业网关

    MQTT网关,两个以上的节点之间通信的新型网关,网络节点之间通过互连来实现双向通信。支持PLC协议转MQTT,实现plc数据采集上云,物联网云平台对接,广泛应用于工业自动化plc远程监测控制。   计讯物联5G MQTT物联网网关TG463功能特性 1、计讯物联MQTT网关具备工业现场设备接

    2024年02月16日
    浏览(61)
  • PLC物联网网关BL104实现PLC协议转MQTT、OPC UA、Modbus TCP

    随着物联网技术的迅猛发展,人们深刻认识到在智能化生产和生活中,实时、可靠、安全的数据传输至关重要。在此背景下,高性能的物联网数据传输解决方案——协议转换网关应运而生,广泛应用于工业自动化和数字化工厂应用环境中。 无缝衔接工业4.0时代 尽享数字工厂

    2024年01月21日
    浏览(68)
  • 将PLC数据上传物联网平台并在云端进行操控

    本篇为我之前文章《将PLC数据上传至物联网平台进行可视化显示》​​​​​​​的拓展,主要实现在可视化的同时在云端对变量进行操控,在之前文章中提到过的一些操作不再详细叙述,具体可查看上一篇文章及其前置文章。 注意事项: PLC和运行Node-Red的电脑须在同一网段

    2024年01月19日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包