数据结构:堆与堆排序

这篇具有很好参考价值的文章主要介绍了数据结构:堆与堆排序。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

堆的定义:

堆的实现:

堆的元素插入:

堆元素删除:

堆初始化与销毁:

堆排序:


堆的定义:

堆是一种完全二叉树,完全二叉树定义如下:

一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。

    堆分为两类:小堆和大堆。小堆是指堆中任意一个节点都值小于它的孩子节点值。同理,大推指任意一个节点的值都大于它孩子节点的值。

堆的结构:

事实上,堆在逻辑结构上可以看作是一种完全二叉树,但在内存中是以数组的方式存储的。堆内节点的下标可以在计算机内如此计算出来:

左孩子节点的下标 = 父节点的下标*2+1

右孩子节点的下标 = 父节点的下标*2+2

父节点的下标 = (子节点下标 - 1)/2

数据结构:堆与堆排序,数据结构,算法,c语言,c++

我们可以很容易看出来,堆数据的插入在逻辑上是一层一层地插入,这一层存满后再到下一层存储。

堆的实现:
Typedef 数据类型 DataType
struct heap {  
       DataType* t;//堆数组内数据类型,指向第一个元素的指针
       int size;  //堆内元素个数
       int capacity;  //堆内元素容量
   }hp;
堆的元素插入:

  由于堆的结构特性,即小堆的双亲节点比它的子节点都要大,大堆的父节点比他的子节点都要小。因此每在数组后插入一个数据都要将这个数据调整到它应该存储的位置,这种调整在逻辑结构中是从下至上的顺序,因此也称为向上调整。

数据结构:堆与堆排序,数据结构,算法,c语言,c++

    每次都与自己的双亲节点对比,在小堆中,如果双亲节点的数据大于插入的新数据,那么两节点作数据交换,依次作交换直到双亲节点数据小于该新插入的数据为止。

    首先我们实现一个向上调整的代码:

void AdjustUp(HpType* a, int child)
 {
    int parent = (child  - 1)/2;//先计算出当前插入数据节点的父节点下标
    while(child > 0)
     { 
       if(a[child] < a[parent])
        {
          HpType tmp = a[child];
          a[child] = a[parent];
          a[parent] = tmp;     //交换两节点数据
          parent = child;
          child  = (parent - 1)/2;  //更新父子节点的值,使其指向下一组父子节点
         }
         else
        {
          break;
        } 
      }
  }

实现完调整堆的代码后,我们可以实现插入数据:

void HeapPush(hp* php,HpDataType x)
{
  assert(hp);
  int newCapacity = php->Capacity == 0?4:2*Capacity;
  HpDataType* tmp = (HpDataType*)realloc(php->a, newCapacity*sizeof(HpDataType);
if(tmp == null) //扩容失败的情况
  {
    perror("realloc failed");
   }
   php->t[php->size] = x;
   php->size++;
   AdjustUp(php->t,php->size - 1];//插入后调整堆
}
堆元素删除:

    堆元素删除是将堆首元素删除的算法。对于堆元素删除,通过上面的逻辑,像数组一样单纯将该数据从数组中移除并将后面的数据向前移动是不可行的,因为会导致堆结构的破坏,父节点和子节点不会形成一致的大小关系,因此我们要实现一个算法实现数据删除后对整个堆进行调整的。

   堆元素删除的算法思想是,将堆末尾元素与首元素进行交换,并将末尾元素删除,此时要删除的元素已经被移出。然后将变换后堆的首元素进行向下调整,调整到它应在的位置。

void AdjustDown(HpDataType* a, int parent,int size)
{
    
      int child = parent*2 + 1;
     while(child < size)
        {
       if( child+1 < size && a[parent*2 + 1] > a[parent*2 + 2])
       {
           child++;
       }
           if(a[parent] > a[child])
          { swap(&a[parent],&a[child];
                parent = child;
                child  = parent*2 + 1;
          }
          else
            {
            break;
            }
        }

}

实现完向下调整算法后即可实现堆删除顶部元素算法:

void HeapPop(ph* php)
   {
     assert(php);
     assert(!HeapEmpty(php));
     swap(php->t[0],php->[size-1]); //将首尾元素进行交换
     php->size--;
     AdjustDown(ph,php->t[0],php->size); //向下调整元素
    }
堆初始化与销毁:
void HeapInit(hp* php)
{
  assert(php);
  php->t = null;
  php->size = 0;
  php->Capacity = 0;
}


void HeapDestroy(hp* php)
  {  
    assert(php);
    free(php);
   }
 堆排序:

    堆排序是很重要的一种排序,从堆的增删查改操作衍生而来,由于其较低的时间复杂度运用较为广泛。

    堆排序算法运用到堆的向下调整和,首先传入一个未排序的数组,此时对该数组进行建堆操作。如果我们新建一个堆,再把数组内数据传入堆内会浪费较大的空间。有没有方法可以对数组本身进行建堆操作呢?

    我们可以想象,对数组本身进行建堆操作,把数组看作是从第一个数开始一直插入n - 1个数形成。那么我们就可以将后面n - 1个数进行插入然后向上调整建堆。文章来源地址https://www.toymoban.com/news/detail-818270.html

void HeapSort(int* a,n)
  {
    for(int i = 1;i < n;i++)
    { AdjustUp(a,i);
          }
  }

到了这里,关于数据结构:堆与堆排序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【C语言 数据结构】堆与二叉树(下)

    接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解 给一组数据,升序(降序)排列 思路 思考:如果排列升序,我们应该建什么堆? 首先,如果 排升序 ,数列最后一个数是 最大数,我们的思路是通过 向上调整 或者 向下调

    2024年01月19日
    浏览(49)
  • 【树】 二叉树 堆与堆排序 平衡(AVL)树 红黑(RB)树

    树是一种非线性的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。 有一个特殊的结点,称为根结点,根节点没有前驱结点 除根节点外,其余结点被分成M(M0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1= i= m)又是一棵结构与树类似的子树。每棵子

    2024年02月14日
    浏览(49)
  • 数据结构——排序算法(C语言)

    本篇将详细讲一下以下排序算法: 直接插入排序 希尔排序 选择排序 快速排序 归并排序 计数排序 排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某写的大小,按照递增或递减0排列起来的操作。 稳定性的概念 假定在待排序的记录序列中,存在多个

    2024年02月08日
    浏览(66)
  • 数据结构与算法——排序(C语言实现)

    ✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅ ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨ 🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿 🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟🌟 🌟🌟 追风赶月莫停留 🌟🌟 🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀 🌟🌟 平芜尽处是春山

    2024年04月09日
    浏览(59)
  • 内部排序算法比较-数据结构C语言课设

    名称: 内部排序算法比较 内容: 在教科书中,各种内部排序算法的时间复杂的分析结果只给出了算法执行时间的阶,或大概执行时间。试通过随机数据比较各种算法的比较次数和移动次数,以取得直观感受。 任务: (1)对以下7中常会用的内部排序算法进行比较

    2024年02月12日
    浏览(55)
  • 第11章:C语言数据结构与算法初阶之排序

    排序是一种非常重要的算法。 排序 :所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的操作。 稳定性 :假定在待排序的记录序列中,存在多个具有相同的的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,

    2024年02月12日
    浏览(47)
  • 数据结构(C语言实现)——常见排序算法的基本思想及实现(快速排序的三种方法和优化及非递归实现快速排序)

    生活中几乎处处都会用到排序,比如:网购时的店铺顺序,学生成绩的排名等,今天我们就来学习数据结构中常见的几种排序算法。 排序 :所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的操作。 稳定性 :假定在待排序的记录序列

    2023年04月24日
    浏览(66)
  • 【数据结构】 优先级队列(堆)与堆的建立

    前面介绍过队列, 队列是一种先进先出(FIFO)的数据结构 ,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适。 比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话

    2024年02月10日
    浏览(41)
  • 数据结构——排序算法——归并排序

    在第二个列表向第一个列表逐个插入的过程中,由于第二个列表已经有序,所以后续插入的元素一定不会在前面插入的元素之前。在逐个插入的过程中,每次插入时,只需要从上次插入的位置开始,继续向后寻找插入位置即可。这样一来,我们最多只需要将两个有序数组遍历

    2024年02月09日
    浏览(47)
  • 【排序算法】数据结构排序详解

    前言: 今天我们将讲解我们数据结构初阶的最后一部分知识的学习,也是最为“炸裂”的知识---------排序算法的讲解!!!! 排序 :所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的操作。 稳定性 :假定在待排序的记录序列中,

    2023年04月08日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包