深度学习中的正则化指的是什么?

这篇具有很好参考价值的文章主要介绍了深度学习中的正则化指的是什么?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在深度学习中,正则化是一种技术,旨在减少模型的过拟合,提高其在未见数据上的泛化能力。过拟合是指模型在训练数据上表现得非常好,但在新数据上表现不佳的情况。正则化通过对模型添加某种形式的约束或惩罚来实现这一目标。以下是几种常见的正则化技术:

L1 和 L2 正则化:

L1 正则化(Lasso 正则化):向损失函数添加参数权重的绝对值的和。 这可以导致模型中某些权重变为零,从而产生一个更简单、更稀疏的模型。
L2 正则化(岭回归或权重衰减):向损失函数添加参数权重的平方和。 这通常会使权重变得更小,但不会完全消除,有助于减少模型复杂度。

Dropout:

在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元或连接。这防止网络对特定的神经元或路径过度依赖,从而提高其泛化能力。

早停(Early Stopping):

在训练过程中,当验证集上的性能不再提升时停止训练。这有助于防止模型在训练数据上过度训练。

数据增强(Data Augmentation):

通过对训练数据进行变化(如旋转、缩放、剪裁等)来增加数据的多样性,这有助于模型学习到更一般的特征。

批量归一化(Batch Normalization):

对每个小批量数据进行归一化处理,有助于稳定和加速神经网络的训练,虽然它主要是为了解决内部协变量偏移问题,但也被发现可以轻微地起到正则化的作用。
正则化的目标是在保持模型性能的同时减少其复杂度,从而避免过拟合,使模型在新数据上的表现更为稳定和准确。文章来源地址https://www.toymoban.com/news/detail-818393.html

到了这里,关于深度学习中的正则化指的是什么?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包