基于卷积神经网络的水果成熟度识别(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】

这篇具有很好参考价值的文章主要介绍了基于卷积神经网络的水果成熟度识别(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

功能演示:

基于vgg16,resnet50卷积神经网络的水果成熟度识别,可识别苹果,香蕉,草莓,荔枝和芒果的成熟度(pytorch框架)_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ae411C7N5/?spm_id_from=333.999.0.0&vd_source=95b9b70984596ccebdb2780f0601b78b

 (一)简介

 基于卷积神经网络的水果成熟度识别系统是在pytorch框架下实现的,系统中有两个模型可选resnet50模型和VGG16模型,这两个模型可用于模型效果对比。该系统涉及的技术栈有,UI界面:python + pyqt5,前端界面:python flask + vue 

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客

pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili

(二)项目介绍

1. pycharm打开项目界面如下

 python前端界面,python,cnn,pytorch

2. 数据集

python前端界面,python,cnn,pytorchpython前端界面,python,cnn,pytorch 

3.GUI界面(技术栈:pyqt5+python)

python前端界面,python,cnn,pytorchpython前端界面,python,cnn,pytorch 

4.前端界面(技术栈:vue+python)

python前端界面,python,cnn,pytorch

5. 核心代码

class MainProcess:
    def __init__(self, train_path, test_path, model_name):
        self.train_path = train_path
        self.test_path = test_path
        self.model_name = model_name
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        def main(self, epochs):
        # 记录训练过程
        log_file_name = './results/vgg16训练和验证过程.txt'
        # 记录正常的 print 信息
        sys.stdout = Logger(log_file_name)

        print("using {} device.".format(self.device))
        # 开始训练,记录开始时间
        begin_time = time()
        # 加载数据
        train_loader, validate_loader, class_names, train_num, val_num = self.data_load()
        print("class_names: ", class_names)
        train_steps = len(train_loader)
        val_steps = len(validate_loader)
        # 加载模型
        model = self.model_load()  # 创建模型

        # 网络结构可视化
        x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入
        model_visual_path = 'results/vgg16_visual.onnx'  # 模型结构保存路径
        torch.onnx.export(model, x, model_visual_path)  # 将 pytorch 模型以 onnx 格式导出并保存
        # netron.start(model_visual_path)  # 浏览器会自动打开网络结构

        # load pretrain weights
        # download url: https://download.pytorch.org/models/vgg16-397923af.pth
        model_weight_path = "models/vgg16-pre.pth"
        assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
        model.load_state_dict(torch.load(model_weight_path, map_location='cpu'))

        # 更改Vgg16模型的最后一层
        model.classifier[-1] = nn.Linear(4096, len(class_names), bias=True)

        # 将模型放入GPU中
        model.to(self.device)
        # 定义损失函数
        loss_function = nn.CrossEntropyLoss()
        # 定义优化器
        params = [p for p in model.parameters() if p.requires_grad]
        optimizer = optim.Adam(params=params, lr=0.0001)

        train_loss_history, train_acc_history = [], []
        test_loss_history, test_acc_history = [], []
        best_acc = 0.0

        for epoch in range(0, epochs):
            # 下面是模型训练
            model.train()
            running_loss = 0.0
            train_acc = 0.0
            train_bar = tqdm(train_loader, file=sys.stdout)
            # 进来一个batch的数据,计算一次梯度,更新一次网络
            for step, data in enumerate(train_bar):
                images, labels = data  # 获取图像及对应的真实标签
                optimizer.zero_grad()  # 清空过往梯度
                outputs = model(images.to(self.device))  # 得到预测的标签
                train_loss = loss_function(outputs, labels.to(self.device))  # 计算损失
                train_loss.backward()  # 反向传播,计算当前梯度
                optimizer.step()  # 根据梯度更新网络参数

                # print statistics
                running_loss += train_loss.item()
                predict_y = torch.max(outputs, dim=1)[1]  # 每行最大值的索引
                # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()
                train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                         epochs,
                                                                         train_loss)
            # 下面是模型验证
            model.eval()  # 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化
            val_acc = 0.0  # accumulate accurate number / epoch
            testing_loss = 0.0
            with torch.no_grad():  # 张量的计算过程中无需计算梯度
                val_bar = tqdm(validate_loader, file=sys.stdout)
                for val_data in val_bar:
                    val_images, val_labels = val_data
                    outputs = model(val_images.to(self.device))

                    val_loss = loss_function(outputs, val_labels.to(self.device))  # 计算损失
                    testing_loss += val_loss.item()

                    predict_y = torch.max(outputs, dim=1)[1]  # 每行最大值的索引
                    # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                    val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()

            train_loss = running_loss / train_steps
            train_accurate = train_acc / train_num
            test_loss = testing_loss / val_steps
            val_accurate = val_acc / val_num

            train_loss_history.append(train_loss)
            train_acc_history.append(train_accurate)
            test_loss_history.append(test_loss)
            test_acc_history.append(val_accurate)

            print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
                  (epoch + 1, train_loss, val_accurate))
            if val_accurate > best_acc:
                best_acc = val_accurate
                torch.save(model.state_dict(), self.model_name)

        # 记录结束时间
        end_time = time()
        run_time = end_time - begin_time
        print('该循环程序运行时间:', run_time, "s")
        # 绘制模型训练过程图
        self.show_loss_acc(train_loss_history, train_acc_history,
                           test_loss_history, test_acc_history)
        # 画热力图
        self.heatmaps(model, validate_loader, class_names)

该系统可以训练自己的数据集,训练过程也比较简单,只需指定自己数据集中训练集和测试集的路径,训练后模型名称和指定训练的轮数即可 

python前端界面,python,cnn,pytorch

训练结束后可输出以下结果:

a. 训练过程的损失曲线

python前端界面,python,cnn,pytorch

b. 模型训练过程记录,模型每一轮训练的损失和精度数值记录

python前端界面,python,cnn,pytorch

c. 模型结构

python前端界面,python,cnn,pytorch  

模型评估可输出:

a. 混淆矩阵 

python前端界面,python,cnn,pytorch 

b. 测试过程和精度数值 

python前端界面,python,cnn,pytorch

(三)资源获取方式

编码不易,源码有偿获取喔!

python前端界面,python,cnn,pytorch

资源主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面、前端界面。欢迎大家咨询! 文章来源地址https://www.toymoban.com/news/detail-818460.html

到了这里,关于基于卷积神经网络的水果成熟度识别(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Transformer(卷积神经网络、循环神经网络)的情感分类研究

    Requirements: * Python: 3.8.5 * PyTorch: 1.8.0 * Transformers: 4.9.0 * NLTK: 3.5 * LTP: 4.0  Model: Attention:   论文解读参考:   https://blog.csdn.net/Magical_Bubble/article/details/89083225 实验步骤: 1)下载VSstudio2019 注意:安装时勾选“Python开发”和“C++桌面开发” 2) 下载和安装nvidia显卡驱动 下载之后

    2024年02月07日
    浏览(46)
  • 基于GUI的卷积神经网络和长短期神经网络的语音识别系统,卷积神经网的原理,长短期神经网络的原理

    背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 长短期神经网络的原理 基于GUI的卷积神经网络和长短期神经网络的语音识别系统 代码下载链接:基于MATLABGUI编程的卷积神经网络和长短期神

    2024年02月12日
    浏览(37)
  • 手写数字识别-基于卷积神经网络

    🌞欢迎来到机器学习的世界  🌈博客主页:卿云阁  💌欢迎关注🎉点赞👍收藏⭐️留言📝 🌟本文由卿云阁原创! 🌠本阶段属于练气阶段,希望各位仙友顺利完成突破 📆首发时间:🌹2021年6月5日🌹 ✉️希望可以和大家一起完成进阶之路! 🙏作者水平很有限,如果发

    2024年02月10日
    浏览(44)
  • 基于卷积神经网络的目标分类案例

    卷积神经网络(Convolutional Neural Networks, CNN 是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(

    2024年02月12日
    浏览(52)
  • 基于卷积神经网络的种子等级识别

    背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 基于卷积神经网络的花生识别,基于卷积神经网络的种子识别 代码下载链接:基于卷积神经网络的花生识别,基于卷积神经网络的种子识别,

    2024年02月11日
    浏览(42)
  • 基于卷积神经网络的高光谱图像分类

    近年来深度学习的技术在计算机视觉领域中大放异彩,使得对多光谱数据分类的研究迅速发展,结合2D-CNN,3D-CNN,注意力机制,PCA降维等方法均可使得对多光谱图像的分类精度得以提升。目前CNN网络大量用于传统的CV领域,而对于高光谱图像的分类仍比较缺乏,本文章基于C

    2024年02月10日
    浏览(42)
  • MATLAB基于卷积神经网络的手势识别

    目录 1. 数据集介绍  2. 训练、保存网络 3. 手势识别 4. 识别结果 5. 总结 本实验所用数据集为从Kaggle平台下载的手语数据集(sign_mnist)中选取的部分数据。 sign_mnist 数据集格式的模式化与经典 MNIST 紧密匹配。每个训练和测试用例表示一个标签 (0-25),作为每个字母 A-Z 的一

    2024年02月06日
    浏览(109)
  • 手势识别系统Python,基于卷积神经网络算法

    手势识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。 视频+代码:https://www.yuque.com/ziwu/

    2024年02月09日
    浏览(65)
  • 基于卷积神经网络的MAE自监督方法

    本文分享自华为云社区《基于卷积神经网络的MAE自监督方法》,作者: Hint 。 图像自监督预训练算法是近年来的重要研究方向,MAE是其中基于ViT实现的代表性方法,学习到了鲁棒的视觉特征。MAE全称是Masked Autoencoders,是由何凯明提出的自监督预训练方法,借鉴了BERT的预训练任

    2024年02月13日
    浏览(49)
  • 基于卷积神经网络的3D动目标检测方法

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 ` 一种基于雷达的多类移动目标检测方法,该方法利用了目标级的专业知识(精确的二维定位、解决相位模糊),以及来自全三维立体雷达数据。包含的雷达数据可以在任何对象聚类之前对单个移动目标

    2024年02月08日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包