【机器学习300问】1、什么是机器学习?

这篇具有很好参考价值的文章主要介绍了【机器学习300问】1、什么是机器学习?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、目前尚未有统一的定义

        维基百科定义:机器学习是一门系统的学科,它关注设计和开发算法,使得机器的行为随着经验数据的累积而进化,经验数据通常是传感器数据或数据库记录。
        百度百科定义:

        机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能核心,是使计算机具有智能的根本途径。

二、大佬们的回答

       Tom M. Mitchell:一个计算机程序能够从经验E中学习(学习任务是T,学习的表现用P衡量),这个程序在任务T与表现衡量P下,可以通过经验E得到改进。

        Jason Brownlee:一个机器学习就是从数据中训练出一个模型,该模型有不低于某种评估指标的泛化能力。文章来源地址https://www.toymoban.com/news/detail-818515.html

到了这里,关于【机器学习300问】1、什么是机器学习?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习300问】15、什么是逻辑回归模型?

            逻辑回归(Logistic Regression)是一种广义线性回归分析模型,尤其适用于解决 二分类问题 (输出为两个类别)。 邮件过滤 :判断一封电子邮件是否为垃圾邮件。结果为垃圾邮件(1)或非垃圾邮件(0); 医疗诊断 :判断病人是否患有某种疾病,如癌症。结果为患

    2024年01月22日
    浏览(46)
  • 【机器学习300问】3、机器学习中有哪些数据集都有什么用?

    在机器学习中,通常将数据集按照不同的功能分成三种: 训练集 、 验证集 和 测试集 。         作用: 用来训练模型算法 ,模型算法根据这个集合中的样本和对应的标签来学习模型参数或权重。         作用: 用来调整模型参数、选择模型结构和超参数优化 。帮

    2024年02月02日
    浏览(42)
  • 【机器学习300问】12、为什么要进行特征归一化?

            当线性回归模型的特征量变多之后,会出现不同的特征量,然而对于那些同是数值型的特征量为什么要做归一化处理呢?         使得不同指标之间具有可比性。例如,分析一个人的身高和体重对健康的影响,如果使用米(m)和于克(kg)作为单位,那么身高特征会在

    2024年01月22日
    浏览(37)
  • 【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?

            在之前的文章中,我们已经学习了一元线性回归模型,其中最关键的参数是w和b。机器学习的目的就是去得到合适w和b后能准确预测未知数据。但现实世界是复杂的,一个事情的发生绝大多数时候不会是一个原因导致。         因此多元线性回归模型区别与一元线

    2024年01月22日
    浏览(43)
  • 【机器学习300问】71、神经网络中前向传播和反向传播是什么?

            我之前写了一篇有关计算图如何帮助人们理解反向传播的文章,那为什么我还要写这篇文章呢?是因为我又学习了一个新的方法来可视化前向传播和反向传播,我想把两种方法总结在一起,方便我自己后续的复习。对了顺便附上往期文章的链接方便回顾: 【机器

    2024年04月17日
    浏览(65)
  • 【机器学习300问】17、什么是欠拟合和过拟合?怎么解决欠拟合与过拟合?

            一个问题出现了,我们首先要描述这个问题,然后分析问题出现的原因,找到原因后提出解决方案。废话不多说,直接上定义,然后通过回归和分类任务的例子来做解释。         欠拟合(Underfitting)指的是模型在训练过程中未能捕捉到数据集中的有效规律或模

    2024年01月25日
    浏览(45)
  • 【机器学习300问】2、机器学习分为哪几类?

            监督学习(Supervised Learning)是机器学习和人工智能中的一种算法学习训练方式。它利 用有标签的数据(通常称为训练数据)作为输入 ,训练一个模型来学习输入和输出之间的关系。模型学习后可以用于预测新的、未见过的数据的输出。这种学习方式的目标是找到

    2024年01月23日
    浏览(39)
  • 【机器学习300问】9、梯度下降是用来干嘛的?

            当你和我一样对自己问出这个问题后,分析一下!其实我首先得知道梯度下降是什么,也就它的定义。其次我得了解它具体用在什么地方,也就是使用场景。最后才是这个问题,梯度下降有什么用?怎么用?         所以我按照这个思路给大家讲讲我自己是怎么理解

    2024年01月21日
    浏览(37)
  • 【机器学习300问】16、逻辑回归模型实现分类的原理?

            在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦:                              【机器学习300问】15、什么是逻辑回归模型?     

    2024年01月25日
    浏览(55)
  • 【机器学习300问】61、逻辑回归与线性回归的异同?

            本文讲述两个经典机器学习逻辑回归(Logistic Regression)和线性回归(Linear Regression)算法的异同,有助于我们在面对实际问题时更好的进行模型选择。也能帮助我们加深对两者的理解,掌握这两类基础模型有助于进一步理解更复杂的模型结构,例如逻辑回归是许多复

    2024年04月12日
    浏览(28)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包