Java/Python/Go不同开发语言在进程、线程和协程的设计差异

这篇具有很好参考价值的文章主要介绍了Java/Python/Go不同开发语言在进程、线程和协程的设计差异。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在多线程项目开发时,最常用、最常遇到的问题是
1,线程、协程安全
2,线程、协程间的通信和控制

本文主要探讨不同开发语言go、java、python在进程、线程和协程上的设计和开发方式的异同。


1. 进程、线程和协程上的差异

1.1 进程、线程、协程的定义

  • 进程
    进程是操作系统进行资源分配的基本单位,每个进程都有自己的独立内存空间,不同的进程之间无法相互干扰。由于进程比较重,占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。

  • 线程
    线程又叫做轻量级进程,是进程的一个实体,是处理器任务调度和执行的基本单位位(能够申请到cpu资源执行相关任务)。它是比进程更小的能独立运行的基本单位。线程只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。
    线程的执行需要申请对应的cpu资源,因此线程切换涉及CPU的资源切换(保存cpu上下文、触发软中断暂停当前线程、从就绪线程中选择一个执行),过程中会涉及用户态 -> 内核态(切换cpu)-> 用户态的切换,因此开销比较大。

  • 协程
    协程,又称微线程,是一种用户态的轻量级线程,协程的调度完全由用户控制(也就是在用户态执行)。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到线程的堆区,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,所以上下文的切换非常快(协程切换,线程不变,因此不需要切换cpu,不进行内核态切换,成本较低)。

进程、线程、协程之间的关系可以如下图诠释
Java/Python/Go不同开发语言在进程、线程和协程的设计差异,python,go,java,开发语言,java,python,go

1.2 进程、线程、协程的差异

线程进程的区别

  1. 根本区别:进程是操作系统资源分配的基本单位,而线程是处理器任务调度和执行的基本单位,cpu运行任务是运行线程
  2. 资源开销:每个进程都有独立的代码和数据空间,程序之间的切换会有较大的开销;线程可以看做轻量级的进程,同一进程的线程共享代码和数据空间,每个线程都有自己独立的运行栈和程序计数器,线程之间切换的开销小。
  3. 包含关系:如果一个进程内有多个线程,则执行过程不是一条线的,而是多条线(线程)共同完成的。
  4. 内存分配:同一进程的线程共享本进程的地址空间和资源,而进程之间的地址空间和资源是相互独立的。
  5. 影响关系:一个进程崩溃后,在保护模式下不会对其他进程产生影响,但是一个线程崩溃整个进程都死掉。所以多进程要比多线程健壮。
  6. 执行过程:每个独立的进程有程序运行的入口、顺序执行序列和程序出口。但是线程不能独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。两者均可并发执行。

协程与线程的区别:

  1. 一个线程可以有多个协程。
  2. 大多数业务场景下,线程进程可以看做是同步机制,而协程则是异步。
  3. 线程是抢占式,而协程是非抢占式的,所以需要用户代码释放使用权来切换到其他协程,因此同一时间其实只有一个协程拥有运行权,相当于单线程的能力。
  4. 协程并不是取代线程,而且抽象于线程之上。线程是被分割的CPU资源, 协程是组织好的代码流程, 协程需要线程来承载运行。

1.3 进程、线程、协程的内存成本

进程占用内存

  • 32 位操作系统只支持 4G 内存的内存条,这是因为进程在 32 位操作系统中最多只能占用 4G 内存
  • 在 64 位操作系统中可以占用更多内存。

线程占用内存

  • 一般是 10MB,不同的操作系统版本之间有些差异,区间在 4M - 64M。

协程占用内

  • 一个协程占用 2KB 左右的内存

内存占用: 进程 >> 线程 >> 协程

更低的内存占用代表着更低的资源切换成本和可以提供更高的并发。

1.4 进程、线程、协程的切换成本

不同的进程享有独立的资源,因此进程切换,需要执行如下2个步骤

  1. 切换页目录以使用新的地址空间(切换虚拟内存空间)
  2. 切换内核栈和硬件上下文(切换cpu资源)

相同进程的线程共享相同的内存,因此切换线程

  1. 使用的是进程的内存资源,不需要切换虚拟内存空间
  2. 切CPU换上下文时,需要耗费 CPU 时间,但是进程切换的开销相差不大(几微秒)。

相同线程的协程使用相同的内存和cpu资源,因此协程切换

  1. 在用户空间发生,不需要切换cpu,只需要切换简单CPU寄存器状态
  2. 一次协程的上下文切换最多需要几十纳秒的时间。

切换成本: 进程切换 > 线程切换 > 协程切换

2. 线程、协程之间的通信和协作方式

线程、协程之间的通信主要用于2个目的

  • 控制线程、协程的执行顺序(触发条件、逻辑启停等)
  • 线程、协程之间传递信息,用于在不同线程、协程之间实现业务逻辑
  • 感知子线程、协程是否已经执行完成

注意,
如果不同的线程进行在操作时,需要注意变量的线程安全问题

  • 如果使用的的对象是线程安全的,不需要加锁保护,但是需要注意多个线程使用相同的对象以及相关对象的性能问题
  • 如果使用的对象不是线程安全的,注意进行保护。

2.1 python如何实现线程通信?

通常使用如下方法进行线程同步,可以根据实际情况调整

  • 共享变量
  • queue队列

更多可以参考 python的多线程及线程间的通信方式

2.2 java如何实现线程通信?

通常使用如下方法进行线程同步,可以根据实际情况调整

  1. 锁与同步
  2. 等待/通知机制
  3. 信号量
  4. 管道

更多可以参考 Java线程间的通信

2.3 go如何实现线程通信?

在go中,常用的是协程(goroutine)进行多并发,因此探讨的通信方式都是以协程(goroutine)进行讨论。

实现多个goroutine间的同步与通信大致有:

  • 全局共享变量
  • channel通信(CSP模型)
  • Context包

这3种方法具体实现可以参考文档 深入golang之—goroutine并发控制与通信

3. 常用线程池的实现和使用方式

3.1 python常用线程池

线程池的基类是 concurrent.futures 模块中的 Executor,Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池。

由于全局GIL锁存在,python多线程本质上同一时间只能1个线程在执行,并不能高效的利用所有的CPU核心。
1, 如果使用多线程,线程的类型基本都是IO密集型,线程进入IO等到时会自动释放GIL索引,因此GIL锁的存在对于这种类型的计算性能影响不算大
2,如果使用多线程,线程的类型基本都是CPU密集型,只能等待解释器不间断运行了1000字节码(Py2)或运行15毫秒(Py3)后,该线程也会放弃GIL,切换到其他的线程执行。

使用线程池来执行线程任务的步骤如下:

  1. 调用 ThreadPoolExecutor 类的构造器创建一个线程池。
  2. 定义一个普通函数作为线程任务。
  3. 调用 ThreadPoolExecutor 对象的 submit() 方法来提交线程任务。
  4. 当不想提交任何任务时,调用 ThreadPoolExecutor 对象的 shutdown() 方法来关闭线程池。
def test(value1, value2=None):
    print("%s threading is printed %s, %s"%(threading.current_thread().name, value1, value2))
    time.sleep(2)
    return 'finished'

def test_result(future):
    print(future.result())

if __name__ == "__main__":
    import numpy as np
    from concurrent.futures import ThreadPoolExecutor
    threadPool = ThreadPoolExecutor(max_workers=4, thread_name_prefix="test_")
    for i in range(0,10):
        future = threadPool.submit(test, i,i+1)

    threadPool.shutdown(wait=True)

更多使用参考PYTHON线程池及其原理和使用(超级详细)

3.2 java常用线程池

常用4中类型的线程池

  • newFixedThreadPool
    构造函数
public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
}

从构造方法可以看出,它创建了一个固定大小的线程池,每次提交一个任务就创建一个线程,直到线程达到线程池的最大值nThreads。线程池的大小一旦达到最大值后,再有新的任务提交时则放入无界阻塞队列中,等到有线程空闲时,再从队列中取出任务继续执行。

  • newCachedThreadPool
    构造函数
public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

从构造方法可以看出,它创建了一个可缓存的线程池。当有新的任务提交时,有空闲线程则直接处理任务,没有空闲线程则创建新的线程处理任务,队列中不储存任务。线程池不对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。如果线程空闲时间超过了60秒就会被回收。(使用方法不是非常推荐)

  • newSingleThreadExecutor
    构造函数
public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
}

从构造方法可以看出,它创建了一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序执行,无法指定最大线程池数量。(使用方法不是非常推荐)

  • newScheduledThreadPool
    构造函数
public class OneMoreStudy {
    public static void main(String[] args) {
        final SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");
        ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(3);
        System.out.println("提交时间: " + sdf.format(new Date()));
        scheduledThreadPool.schedule(new Runnable() {
                @Override
                public void run() {
                    System.out.println("运行时间: " + sdf.format(new Date()));
                }
            }, 3, TimeUnit.SECONDS);
        scheduledThreadPool.shutdown();
    }
}

这个方法创建了一个固定大小的线程池,支持定时及周期性任务执行。创建并执行ScheduledFuture,该ScheduledFuture在指定的延迟后启用,任务立即提交给线程池,线程池安排线程在指定时间后正式开始运作,运作以后保持正常节奏(类似调度任务)

根据使用习惯选择合适的方法类,更多可以参考Java中常用的四种线程池

3.3 go常用线程池

go的基础方法类中没有实现线程池,需要自己实现,或者引入第三方库进行实现。

4. 疑问和思考

4.1 go语言中,协程的成本已经很低,还有必要使用线程池吗?

梳理常用的开发语言中,是有已经有了现成的线程池方法(类)提供使用,情况如下:

开发语言 是否支持线程池 备注
python
java
go 可以引用第三方的库或者自己实现

go的协程已经把单个协程的成本降低到足够低,还有必要设计线程池吗?该问题在Go Forum 中 skillian 做了解答。

我引用回复

Like lutzhorn said: Need? No.

But for some workloads in some projects, it might make sense to have a general worker pool implementation. The benefit is that the memory consumption can be limited by not allowing the number of goroutines to exceed whatever the pool allows, though I’m unsure of what order of magnitude of goroutines you need before that benefit is manifested.

Francesc Campoy created a fractal with 4 million goroutines (link 55) and it worked and scaled, but not perfectly. The issue wasn’t with the number of goroutines but that the runtime spent more time managing the goroutines than the goroutines actually worked. By giving the goroutines more work, (I think instead of each goroutine processing only one pixel, they processed the whole line?) the solution still scaled and ended up performing better.

翻译过来就是
1, 通常不需要
2, 除了特殊场景,特殊项目上,线程池是有意义的。这样做的好处是,可以通过不允许超过池允许的程序的数量来限制内存消耗,尽管我不确定在显示出这种好处之前需要多少量级的程序。文章来源地址https://www.toymoban.com/news/detail-818658.html

5. 参考文档

  • 一文快速了解进程、线程与协程
  • 进程、线程以及协程的区别
  • 深入golang之—goroutine并发控制与通信
  • Java线程间的通信

到了这里,关于Java/Python/Go不同开发语言在进程、线程和协程的设计差异的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【策略设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    策略模式(Strategy Pattern)属于行为型设计模式。将每一个算法封装到具有共同接口的独立类中,根据需要来绑定策略,使得具体实现和策略解耦。 当你想使用对象中各种不同的算法变体,使用if...else 所带来的复杂和难以维护,可使用策略模式。或者当有许多相同类,它们仅

    2024年02月01日
    浏览(45)
  • 【代理设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    代理模式(Proxy Pattern)是一种结构型设计模式,用一个类来代理另一个类或几个类的功能。 在代理模式中,我们创建具有现有对象的对象,以便向外界提供功能接口。 延迟初始化(虚拟代理)。如果你有一个偶尔使用的重量级服务对象,一直保持该对象运行会消耗系统资源

    2023年04月25日
    浏览(88)
  • 【单例设计模式原理详解】Java/JS/Go/Python/TS不同语言实现

    单例模式(Singleton Pattern)属于创建型设计模式,这种模式只创建一个单一的类,保证一个类只有一个实例,并提供一个访问该实例的全局节点。 当您想控制实例数目,节省系统资源,并不想混用的时候,可以使用单例模式。单例有很多种实现方式,主要分为懒汉和饿汉模式

    2023年04月27日
    浏览(92)
  • 【迭代器设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    迭代器模式(Iterator Pattern),是一种结构型设计模式。给数据对象构建一套按顺序访问集合对象元素的方式,而不需要知道数据对象的底层表示。 迭代器模式是与集合共存的,我们只要实现一个集合,就需要同时提供这个集合的迭代器,就像Java中的Collection,List、Set、Map等

    2023年04月17日
    浏览(48)
  • 【模板方法设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    模板方法模式(Template Method Pattern)也叫模板模式,是一种行为型模式。它定义了一个抽象公开类,包含基本的算法骨架,而将一些步骤延迟到子类中,模板方法使得子类可以不改变算法的结构,只是重定义该算法的某些特定步骤。不同的子类以不同的方式实现这些抽象方法

    2024年02月01日
    浏览(86)
  • 【享元设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    享元模式(Flyweight Pattern),是一种结构型设计模式。主要用于减少创建对象的数量,以减少内存占用和提高性能。它摒弃了在每个对象中保存所有数据的方式,通过共享多个对象所共有的相同状态,让你能在有限的内存容量中载入更多对象。 当程序需要生成数量巨大的相似

    2023年04月10日
    浏览(39)
  • 【解释器设计模式详解】C/Java/Go/JS/TS/Python不同语言实现

    解释器模式(Interpreter Pattern)是一种行为型设计模式。这种模式实现了一个表达式接口,该接口解释一个特定的上下文。这种模式常被用在 SQL 解析、符号处理引擎等。 解释器模式常用于对简单语言的编译或分析实例中,为了掌握好它的结构与实现,必须先了解编译原理中的

    2023年04月12日
    浏览(232)
  • 【观察者设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    观察者模式(Observer Pattern)是一种行为型模式。它定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。 观察者模式使用三个类Subject、Observer和Client。Subject对象带有绑定观察者到Client对象和从Client对象解绑观察

    2023年04月21日
    浏览(81)
  • 【备忘录设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    备忘录模式(Memento Pattern)是一种结构型设计模式。这种模式就是在不破坏封装的条件下,将一个对象的状态捕捉(Capture)住,并放在外部存储起来,从而可以在将来合适的时候把这个对象还原到存储起来的状态。备忘录模式常常与命令模式和迭代子模式一同使用。 备忘录模式

    2023年04月20日
    浏览(75)
  • 【访问者设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

    访问者模式(Visitor Pattern)是一种行为型模式。它封装一个访问者类,把各元素类的操作集合起来,目的是将数据结构与数据操作分离。在不改变原有元素类数据结构的前提下,改变了元素类的执行算法。 当某些较为稳定的东西(数据结构或算法),不想直接被改变但又想扩

    2024年02月02日
    浏览(80)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包