一碰就头疼的 Kafka 消息重复问题,立马解决!

这篇具有很好参考价值的文章主要介绍了一碰就头疼的 Kafka 消息重复问题,立马解决!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq

一、前言

数据重复这个问题其实也是挺正常,全链路都有可能会导致数据重复。
一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq
通常,消息消费时候都会设置一定重试次数来避免网络波动造成的影响,同时带来副作用是可能出现消息重复。

整理下消息重复的几个场景:
  1. 生产端: 遇到异常,基本解决措施都是 重试 。
  • 场景一:leader分区不可用了,抛 LeaderNotAvailableException 异常,等待选出新 leader 分区。
  • 场景二:Controller 所在 Broker 挂了,抛 NotControllerException 异常,等待 Controller 重新选举。
  • 场景三:网络异常、断网、网络分区、丢包等,抛 NetworkException 异常,等待网络恢复。
  1. 消费端:poll一批数据,处理完毕还没提交 offset ,机子宕机重启了,又会poll上批数据,再度消费就造成了消息重复。

怎么解决?
先来了解下消息的三种投递语义:

  • 最多一次( at most once): 消息只发一次,消息可能会丢失,但绝不会被重复发送。例如:mqttQoS = 0
  • 至少一次( at least once): 消息至少发一次,消息不会丢失,但有可能被重复发送。例如:mqtt QoS = 1
  • 精确一次( exactly once): 消息精确发一次,消息不会丢失,也不会被重复发送。例如:mqtt QoS = 2

了解了这三种语义,再来看如何解决消息重复,即如何实现精准一次,可分为三种方法:

  1. Kafka 幂等性 Producer 保证生产端发送消息幂等。局限性,是只能保证单分区且单会话(重启后就算新会话)
  2. Kafka 事务: 保证生产端发送消息幂等。解决幂等 Producer 的局限性。
  3. 消费端幂等:保证消费端接收消息幂等。蔸底方案。
Kafka 幂等性 Producer

幂等性指 :无论执行多少次同样的运算,结果都是相同的。即一条命令,任意多次执行所产生的影响均与一次执行的影响相同。

幂等性使用示例:在生产端添加对应配置即可

Properties props = new Properties();
props.put("enable.idempotence", ture); // 1. 设置幂等
props.put("acks", "all"); // 2. 当 enable.idempotence 为 true,这里默认为 all
props.put("max.in.flight.requests.per.connection", 5); // 3. 注意
  1. 设置幂等,启动幂等。
  2. 配置 acks,注意:一定要设置 acks=all,否则会抛异常。
  3. 配置 max.in.flight.requests.per.connection 需要 <= 5 ,否则会抛异常 OutOfOrderSequenceException
  • 0.11 >= Kafka < 1.1, max.in.flight.request.per.connection = 1
  • Kafka >= 1.1, max.in.flight.request.per.connection <= 5

为了更好理解,需要了解下Kafka 幂等机制:
一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq

  1. Producer 每次启动后,会向 Broker 申请一个全局唯一的 pid。(重启后 pid 会变化,这也是弊端之一)
  2. Sequence Numbe:针对每个 <Topic, Partition> 都对应一个从0开始单调递增的 Sequence,同时 Broker端会缓存这个 seq num
  3. 判断是否重复: 拿 <pid, seq num>Broker 里对应的队列 ProducerStateEntry.Queue(默认队列长度为 5)查询是否存在
  • 如果 nextSeq == lastSeq + 1,即 服务端seq + 1 == 生产传入seq,则接收。
  • 如果 nextSeq == 0 && lastSeq == Int.MaxValue,即刚初始化,也接收。
  • 反之,要么重复,要么丢消息,均拒绝。

一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq
这种设计针对解决了两个问题:

  1. 消息重复: 场景 Broker 保存消息后还没发送 ack 就宕机了,这时候Producer就会重试,这就造成消息重复。
  2. 消息乱序: 避免场景,前一条消息发送失败而其后一条发送成功,前一条消息重试后成功,造成的消息乱序。

那什么时候该使用幂等:
3. 如果已经使用 acks=all,使用幂等也可以。
4. 如果已经使用 acks=0 或者 acks=1,说明你的系统追求高性能,对数据一致性要求不高。不要使用幂等。

Kafka 事务

使用 Kafka 事务解决幂等的弊端:单会话且单分区幂等。
Tips: 这块篇幅较长,这先稍微提及下使用,之后另起一篇。

事务使用示例:分为生产端 和 消费端

Properties props = new Properties();
props.put("enable.idempotence", ture); // 1. 设置幂等
props.put("acks", "all"); // 2. 当 enable.idempotence 为 true,这里默认为 all
props.put("max.in.flight.requests.per.connection", 5); // 3. 最大等待数
props.put("transactional.id", "my-transactional-id"); // 4. 设定事务 id

Producer<String, String> producer = new KafkaProducer<String, String>(props);

// 初始化事务
producer.initTransactions();

try{
    // 开始事务
    producer.beginTransaction();

    // 发送数据
    producer.send(new ProducerRecord<String, String>("Topic", "Key", "Value"));
 
    // 数据发送及 Offset 发送均成功的情况下,提交事务
    producer.commitTransaction();
} catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {
    // 数据发送或者 Offset 发送出现异常时,终止事务
    producer.abortTransaction();
} finally {
    // 关闭 Producer 和 Consumer
    producer.close();
    consumer.close();
}

这里消费端 Consumer 需要设置下配置:isolation.level 参数

  • read_uncommitted: 这是默认值,表明 Consumer 能够读取到 Kafka 写入的任何消息,不论事务型 Producer 提交事务还是终止事务,其写入的消息都可以读取。如果你用了事务型 Producer,那么对应的 Consumer 就不要使用这个值。
  • read_committed: 表明 Consumer 只会读取事务型 Producer 成功提交事务写入的消息。当然了,它也能看到非事务型 Producer 写入的所有消息。
消费端幂等

“如何解决消息重复?” 这个问题,其实换一种说法:就是如何解决消费端幂等性问题。
只要消费端具备了幂等性,那么重复消费消息的问题也就解决了。

典型的方案是使用:消息表,来去重:
一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq

  • 上述例子中,消费端拉取到一条消息后,开启事务,将消息Id 新增到本地消息表中,同时更新订单信息。
  • 如果消息重复,则新增操作insert会异常,同时触发事务回滚。

二、案例:Kafka 幂等性 Producer 使用

环境搭建可参考:https://developer.confluent.io/tutorials/message-ordering/kafka.html#view-all-records-in-the-topic

准备工作如下:

  1. Zookeeper:本地使用 Docker 启动
$ docker run -d --name zookeeper -p 2181:2181 zookeeper
a86dff3689b68f6af7eb3da5a21c2dba06e9623f3c961154a8bbbe3e9991dea4
  1. Kafka:版本 2.7.1,源码编译启动(看上文源码搭建启动)
  2. 启动生产者:Kafka 源码中 exmaple
  3. 启动消息者:可以用 Kafka 提供的脚本
# 举个栗子:topic 需要自己去修改
$ cd ./kafka-2.7.1-src/bin
$ ./kafka-console-producer.sh --broker-list localhost:9092 --topic test_topic

创建 topic 1副本,2 分区

$ ./kafka-topics.sh --bootstrap-server localhost:9092 --topic myTopic --create --replication-factor 1 --partitions 2

# 查看
$ ./kafka-topics.sh --bootstrap-server broker:9092 --topic myTopic --describe

生产者代码:
一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq

public class KafkaProducerApplication {

    private final Producer<String, String> producer;
    final String outTopic;

    public KafkaProducerApplication(final Producer<String, String> producer,
                                    final String topic) {
        this.producer = producer;
        outTopic = topic;
    }

    public void produce(final String message) {
        final String[] parts = message.split("-");
        final String key, value;
        if (parts.length > 1) {
            key = parts[0];
            value = parts[1];
        } else {
            key = null;
            value = parts[0];
        }
        final ProducerRecord<String, String> producerRecord
            = new ProducerRecord<>(outTopic, key, value);
        producer.send(producerRecord,
                (recordMetadata, e) -> {
                    if(e != null) {
                        e.printStackTrace();
                    } else {
                        System.out.println("key/value " + key + "/" + value + "\twritten to topic[partition] " + recordMetadata.topic() + "[" + recordMetadata.partition() + "] at offset " + recordMetadata.offset());
                    }
                }
        );
    }

    public void shutdown() {
        producer.close();
    }

    public static void main(String[] args) {

        final Properties props = new Properties();

        props.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, "true");
        props.put(ProducerConfig.ACKS_CONFIG, "all");

        props.put(ProducerConfig.CLIENT_ID_CONFIG, "myApp");
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

        final String topic = "myTopic";
        final Producer<String, String> producer = new KafkaProducer<>(props);
        final KafkaProducerApplication producerApp = new KafkaProducerApplication(producer, topic);

        String filePath = "/home/donald/Documents/Code/Source/kafka-2.7.1-src/examples/src/main/java/kafka/examples/input.txt";
        try {
            List<String> linesToProduce = Files.readAllLines(Paths.get(filePath));
            linesToProduce.stream().filter(l -> !l.trim().isEmpty())
                    .forEach(producerApp::produce);
            System.out.println("Offsets and timestamps committed in batch from " + filePath);
        } catch (IOException e) {
            System.err.printf("Error reading file %s due to %s %n", filePath, e);
        } finally {
            producerApp.shutdown();
        }
    }
}

启动生产者后,控制台输出如下:
一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq
启动消费者:

$ ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic myTopic

一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq

修改配置 acks
启用幂等的情况下,调整 acks 配置,生产者启动后结果是怎样的:

  • 修改配置 acks = 1
  • 修改配置 acks = 0

会直接报错:

Exception in thread "main" org.apache.kafka.common.config.ConfigException: Must set acks to all in order to use the idempotent producer.
Otherwise we cannot guarantee idempotence.

一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq
修改配置 max.in.flight.requests.per.connection

启用幂等的情况下,调整此配置,结果是怎样的:
max.in.flight.requests.per.connection > 5 会怎样?
一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq
当然会报错:

Caused by: org.apache.kafka.common.config.ConfigException: Must set max.in.flight.requests.per.connection to at most 5 to use the idempotent producer.

一碰就头疼的 Kafka 消息重复问题,立马解决!,随笔,日常开发问题集锦,kafka,linq文章来源地址https://www.toymoban.com/news/detail-818720.html

到了这里,关于一碰就头疼的 Kafka 消息重复问题,立马解决!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kafka数据重复问题解决方案

    通常,消息消费时候都会设置一定重试次数来避免网络波动造成的影响,同时带来副作用是可能出现消息重复。 幂等性指: 幂等性使用示例: 为了更好理解,需要了解下Kafka幂等机制 这种设计针对解决了两个问题: 那什么时候该使用幂等: 事务使用示例:分为生产端 和

    2024年02月07日
    浏览(54)
  • 阿里三面:MQ 消息丢失、重复、积压问题,如何解决?

    作者:美得让人心动 来源:https://blog.csdn.net/gu131007416553/article/details/120934738 面试官在面试候选人时,如果发现候选人的简历中写了在项目中使用了 MQ 技术(如 Kafka、RabbitMQ、RocketMQ),基本都会抛出一个问题:在使用 MQ 的时候,怎么确保消息 100% 不丢失? 这个问题在实际工

    2024年02月09日
    浏览(48)
  • 【RabbitMQ | 第六篇】消息重复消费问题及解决方案

    什么是 消息重复消费 ?首先我们来看一下消息的传输流程。消息生产者–MQ–消息消费者;消息生产者发送消息到MQ服务器,MQ服务器存储消息,消息消费者监听MQ的消息,发现有消息就消费消息。 所以消息重复也就出现在 两个阶段 1 :生产者多发送了消息给MQ; 2 :MQ的一条

    2024年04月26日
    浏览(50)
  • RabbitMQ消息丢失、消息重复消费、消息顺序性无法保证、消息积压、一致性问题、系统可用性降低等这些常见问题怎么解决

    该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 1. 消息丢失 问题 :在生产者发送消息到MQ、MQ内部处理、消费者接收消息的任一环节都可能导致消息丢失。 解决方案 : 生产者确认机制 :确保消息

    2024年04月25日
    浏览(38)
  • 记一次线上kafka重复消费的问题解决及思考

    线上ELK日志发现kafka消费者消费到重复消息 由于生产方本身就发送了重复的消息,导致消费到重复消息 消费方采用的是循环poll的模式,具体是在多线程分租户去批量处理的消息

    2024年02月10日
    浏览(53)
  • 解决Kafka新消费者组导致重复消费的问题

             问题描述 :在使用Kafka时,当我们向新的消费者组中添加消费者时,可能会遇到重复消费的问题。本文将介绍一些解决这个问题的方法,帮助开发者更好地处理Kafka中的消费者组和消费偏移量。         Kafka是一个强大的分布式消息队列系统,但在使用过程中

    2024年02月07日
    浏览(48)
  • kafka如何避免消息重复消费

    Kafka 避免消息重复消费通常依赖于以下策略和机制: Kafka使用Consumer Group ID来跟踪每个消费者所读取的消息。确保每个消费者都具有唯一的Group ID。如果多个消费者属于同一个Group ID,那么它们将共享消息,但每个分区的消息只能由一个消费者处理。 Kafka会记录每个消费者组消

    2024年01月15日
    浏览(44)
  • Kafka如何解决消息丢失的问题

    在 Kafka 的整个架构中可以总结出消息有三次传递的过程: Producer 端发送消息给 Broker 端 Broker 将消息进行并持久化数据 Consumer 端从 Broker 将消息拉取并进行消费 在以上这三步中每一步都可能会出现丢失数据的情况, 那么 Kafka 到底在什么情况下才能保证消息不丢失呢? Produ

    2024年02月12日
    浏览(38)
  • kafka如何保证消息不被重复消费

    (1)kafka有个offset的概念,当每个消息被写进去后,都有一个offset,代表他的序号,然后consumer消费该数据之后,隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了。下次我要是重启,就会继续从上次消费到的offset来继续消费。但是当我们直接kill进程

    2024年02月11日
    浏览(51)
  • 防止消息丢失与消息重复——Kafka可靠性分析及优化实践

    上手第一关,手把手教你安装kafka与可视化工具kafka-eagle Kafka是什么,以及如何使用SpringBoot对接Kafka 架构必备能力——kafka的选型对比及应用场景 Kafka存取原理与实现分析,打破面试难关 在上一章内容中,我们解析了Kafka在读写层面上的原理,介绍了很多Kafka在读出与写入时的

    2024年02月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包