回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测

这篇具有很好参考价值的文章主要介绍了回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回归预测 | Matlab基于SO-LSTM蛇群算法优化长短期记忆神经网络的数据多输入单输出回归预测

效果一览

回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测

回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测
回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测
回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测
回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测
回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测
回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测
回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测

基本介绍

1.Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测(完整源码和数据);
2.优化参数为:学习率,隐含层节点,正则化参数。
3.多特征输入单输出的回归预测。程序内注释详细,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测,回归预测,SO-BiLSTM,蛇群算法优化,双向长短期记忆神经网络,多输入单输出,回归预测

程序设计

  • 完整源码和数据获取方式(资源处下载):Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测。
function [fval,Xfood,gbest_t] = SO(N,T,lb,ub,dim,fobj)
%initial 
vec_flag=[1,-1];
Threshold=0.25;
Thresold2= 0.6;
C1=0.5;
C2=.05;
C3=2;
X=initialization(N,dim,ub,lb);
for i=1:N
 fitness(i)=feval(fobj,X(i,:));   
end
[GYbest, gbest] = min(fitness);
Xfood = X(gbest,:);
%Diving the swarm into two equal groups males and females
Nm=round(N/2);%eq.(2&3)
Nf=N-Nm;
Xm=X(1:Nm,:);
Xf=X(Nm+1:N,:);
fitness_m=fitness(1:Nm);
fitness_f=fitness(Nm+1:N);
[fitnessBest_m, gbest1] = min(fitness_m);
Xbest_m = Xm(gbest1,:);
[fitnessBest_f, gbest2] = min(fitness_f);
Xbest_f = Xf(gbest2,:);
for t = 1:T
    disp(['  ',num2str(t),' ε   '])
    Temp=exp(-((t)/T));  %eq.(4)
  Q=C1*exp(((t-T)/(T)));%eq.(5)
    if Q>1        Q=1;    end
    % Exploration Phase (no Food)
if Q<Threshold
    for i=1:Nm
        for j=1:1:dim
            rand_leader_index = floor(Nm*rand()+1);
            X_randm = Xm(rand_leader_index, :);
            flag_index = floor(2*rand()+1);
            Flag=vec_flag(flag_index);
            Am=exp(-fitness_m(rand_leader_index)/(fitness_m(i)+eps));%eq.(7)
            Xnewm(i,j)=X_randm(j)+Flag*C2*Am*((ub(j)-lb(j))*rand+lb(j));%eq.(6)
        end
    end
    for i=1:Nf
        for j=1:1:dim
            rand_leader_index = floor(Nf*rand()+1);
            X_randf = Xf(rand_leader_index, :);
            flag_index = floor(2*rand()+1);
            Flag=vec_flag(flag_index);
            Af=exp(-fitness_f(rand_leader_index)/(fitness_f(i)+eps));%eq.(9)
            Xnewf(i,j)=X_randf(j)+Flag*C2*Af*((ub(j)-lb(j))*rand+lb(j));%eq.(8)
        end
    end
else %Exploitation Phase (Food Exists)
    if Temp>Thresold2  %hot
        for i=1:Nm
            flag_index = floor(2*rand()+1);
            Flag=vec_flag(flag_index);
            for j=1:1:dim
                Xnewm(i,j)=Xfood(j)+C3*Flag*Temp*rand*(Xfood(j)-Xm(i,j));%eq.(10)
            end
        end
        for i=1:Nf
            flag_index = floor(2*rand()+1);
            Flag=vec_flag(flag_index);
            for j=1:1:dim
                Xnewf(i,j)=Xfood(j)+Flag*C3*Temp*rand*(Xfood(j)-Xf(i,j));%eq.(10)
            end
        end
    else %cold
        if rand>0.6 %fight
            for i=1:Nm
                for j=1:1:dim
                    FM=exp(-(fitnessBest_f)/(fitness_m(i)+eps));%eq.(13)
                    Xnewm(i,j)=Xm(i,j) +C3*FM*rand*(Q*Xbest_f(j)-Xm(i,j));%eq.(11)
                    
                end
            end
            for i=1:Nf
                for j=1:1:dim
                    FF=exp(-(fitnessBest_m)/(fitness_f(i)+eps));%eq.(14)
                    Xnewf(i,j)=Xf(i,j)+C3*FF*rand*(Q*Xbest_m(j)-Xf(i,j));%eq.(12)
                end
            end
        else%mating
            for i=1:Nm
                for j=1:1:dim
                    Mm=exp(-fitness_f(i)/(fitness_m(i)+eps));%eq.(17)
                    Xnewm(i,j)=Xm(i,j) +C3*rand*Mm*(Q*Xf(i,j)-Xm(i,j));%eq.(15
                end
            end
            for i=1:Nf
                for j=1:1:dim
                    Mf=exp(-fitness_m(i)/(fitness_f(i)+eps));%eq.(18)
                    Xnewf(i,j)=Xf(i,j) +C3*rand*Mf*(Q*Xm(i,j)-Xf(i,j));%eq.(16)
                end
            end


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718文章来源地址https://www.toymoban.com/news/detail-818754.html

到了这里,关于回归预测 | Matlab基于SO-BiLSTM蛇群算法优化双向长短期记忆神经网络的数据多输入单输出回归预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包